Питание лампочки постоянным током - Строительный журнал
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Питание лампочки постоянным током

Питание лампочки постоянным током

Наиболее часто применяемые устройства импульсного (стартерного) зажигания люминесцентных ламп обладают некоторыми существенными недостатками: неопределенным временем зажигания, перегрузкой электродов лампы при ее включении, повышенным уровнем радиопомех.

Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. Здесь зачастую нить перегорает.

Более перспективны — безстартерные устройства зажигания, где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы — на них подается напряжение, необходимое для поджига газа в лампе.

Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ — через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться — ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.

В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к «своей» цепи — тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой — СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов — этому способствуют диоды VD1,VD2.

Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

Несколько лучший вариант питания мощной люминесцентной лампы — использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы — МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 — для лампы мощностью 20 Вт, 1УБИ40 — 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.

Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.

устройство для зажигания и питания люминесцентной лампы постоянным током

Использование: бесстартерные устройства для зажигания и питания люминесцентной лампы постоянным током, в которых энергия переменного тока на входе преобразуется в энергию постоянного тока на выходе с помощью диодно-конденсаторных ячеек умножения напряжения, в частности светильники. Сущность изобретения: устройство содержит лампу накаливания, первый, второй, третий и четвертый диоды, составляющие мостовой выпрямитель, первый конденсатор, который одним выводом соединен с разноименными выводами первого и второго диодов и с одним выводом лампы накаливания, а другим с катодами первого и третьего диодов, второй конденсатор, который одним выводом соединен с разноименными выводами третьего и четвертого диодов, а другим выводом с анодами второго и четвертого диодов, люминесцентную лампу. С целью снижения пускового тока люминесцентной лампы между общей точкой соединения лампы накаливания, первого конденсатора, первого и второго диодов и общей точкой соединения второго конденсатора, третьего и четвертого диодов и включен позистор. Напряжение питающей сети подают на свободный вывод лампы накаливания и общую точку соединения позистора, второго конденсатора, третьего и четвертого диодов. Для быстрого разряда конденсаторов при отключении напряжения сети может быть подключен постоянный резистор к выводам люминесцентной лампы. 1 ил.

Читать еще:  Мощность тока электрической лампочки карманного фонаря

Формула изобретения

УСТРОЙСТВО ДЛЯ ЗАЖИГАНИЯ И ПИТАНИЯ ЛЮМИНЕСЦЕНТНОЙ ЛАМПЫ ПОСТОЯННЫМ ТОКОМ, содержащее лампу накаливания, четыре диода, составляющие мостовой выпрямитель, первый конденсатор, который одним выводом соединен с разноименными выводами первого и второго диодов и с одним выводом лампы накаливания, а другим выводом соединен с катодами первого и третьего диодов, второй конденсатор, который одним выводом соединен с разноименными выводами третьего и четвертого диодов, отличающееся тем, что введен позистор, который одним выводом подключен к точке соединения лампы накаливания, первого конденсатора, первого и второго диодов, а другим выводом к точке соединения второго конденсатора, третьего и четвертого диодов, при этом другой вывод второго конденсатора соединен с анодами второго и четвертого диодов.

Описание изобретения к патенту

Изобретение относится к бесстартерным устройствам для зажигания и питания люминесцентной лампы постоянным током, в которых энергия переменного тока на входе преобразуется в энергию постоянного тока на выходе с помощью диодно-конденсаторных ячеек умножения напряжения и может быть использовано в светильниках.

Известно устройство для зажигания и питания люминесцентной лампы постоянным током, содержащее выпрямители с удвоением напряжения, включающие диодно-конденсаторные ячейки, лампу накаливания в качестве балластного сопротивления, люминесцентную лампу [1] Недостатком этого устройства является значительный пусковой ток для ламп, поскольку сопротивление холодной нити лампы накаливания мало, а на выходе схемы возникает учетверенное амплитудное напряжение сети.

Наиболее близким к предлагаемому объекту является устройство для зажигания и питания люминесцентной лампы постоянным током, содержащее четыре диода, составляющие мостовой выпрямитель, два конденсатора, которые одним выводом соединены с разноименными выводами первого и второго диодов, а другими выводами с катодами первого, третьего и анодами второго, четвертого диодов соответственно, которые подключены к люминесцентной лампе, а также лампу накаливания, подключенную между входом выпрямителя и проводами питающей сети [2] Хотя в данном устройстве пусковой ток меньше, все же он значителен для люминесцентной лампы из-за малого сопротивления холодной нити лампы накаливания.

Предлагаемое устройство содержит лампу накаливания, четыре диода, составляющие мостовой выпрямитель, первый конденсатор, который одним выводом соединен с разноименными выводами первого и второго диодов и с одним из выводов лампы накаливания, а другим выводом соединен с катодами первого и третьего диодов, второй конденсатор, который одним выводом соединен с разноименными выводами третьего и четвертого диодов. С целью снижения пускового тока люминесцентной лампы в устройство введен позистор, который одним выводом подключен к точке соединения лампы накаливания, первого конденсатора, первого и второго диодов, а другим выводом к точке соединения второго конденсатора, третьего и четвертого диодов, при этом другой вывод второго конденсатора соединен с анодами второго и четвертого диодов.

Для быстрого разряда конденсаторов при отключении напряжения сети может быть подключен постоянный резистор к выходу мостового выпрямителя.

При установлении в устройстве зажигания и питания люминесцентной лампы позистора происходит предварительный разогрев нити лампы накаливания, поэтому пусковой ток люминесцентной лампы ограничивается, а режим зажигания становится менее жестким.

На чертеже представлена принципиальная электрическая схема предлагаемого устройства.

Устройство содержит первый, второй, третий и четвертый диоды 1-4, выполняющие функцию мостового выпрямителя, первый конденсатор 5, который одним выводом соединен с разноименными выводами первого 1 и второго 2 диодов и с одним из выводов лампы накаливания 6, а другим с катодами первого 1 и третьего 3 диодов, второй конденсатор 7, который одним выводом соединен с разноименными выводами третьего 3 и четвертого 4 диодов, а другим выводом с анодами второго 2 и четвертого 4 диодов, люминесцентную лампу 8. К точке соединения лампы накаливания 6, первого конденсатора 5, первого 1 и второго 2 диодов и к точке соединения второго конденсатора 7, третьего и четвертого 3 и 4 диодов подключен позистор 9. Напряжение питающей сети подают на второй вывод лампы накаливания 6 и к точке соединения позистора 9, второго конденсатора 7, третьего 3 и четвертого 4 диодов.

Читать еще:  Светодиодный прожектор лампа переменного тока

Устройство работает следующим образом. Сначала переменный ток прогревает лампу накаливания 6 и позистор 9. Сопротивление позистора и напряжение на нем увеличиваются. Это переменное напряжение заряжает конденсаторы 5 и 7 через диоды 3 и 2 соответственно до амплитудного значения.

Напряжения на конденсаторах 5 и 7 складываются, люминесцентная лампа зажигается, и затем в схеме устанавливается рабочий режим. Поскольку емкость конденсаторов 5 и 7 относительно мала, они не оказывают существенного влияния на рабочий ток, поэтому диоды 1-4 работают в схеме мостового выпрямителя. Лампа накаливания 6 стабилизирует рабочий режим устройства и ток в люминесцентной лампе.

Преимущество предлагаемого устройства заключается в том, что из-за установления в устройстве зажигания и питания люминесцентной лампы позистора происходит предварительный разогрев нити лампы накаливания, при этом пусковой ток люминесцентной лампы ограничивается, а режим зажигания становится менее жестким. Снижение пускового тока люминесцентной лампы увеличивает ее долговечность.

Питание лампы дневного света постоянным током

Наиболее часто применяемые устройства импульсного (стартерного) зажигания люминесцентных ламп обладают некоторыми существенными недостатками: неопределенным временем зажигания, перегрузкой электродов лампы при ее включении, повышенным уровнем радиопомех.

Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. -десь зачастую нить перегорает.

Более перспективны — безстартерные устройства зажигания, где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы — на них подается напряжение, необходимое для поджига газа в лампе.

Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор С- — через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться — ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.

В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к «своей» цепи — тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. -десь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VD-), а в другой — С- (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов — этому способствуют диоды VD1,VD2.

Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

Несколько лучший вариант питания мощной люминесцентной лампы — использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы — МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 — для лампы мощностью 20 Вт, 1УБИ40 — 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.

Читать еще:  Являет ют ся ли источником электрического тока настольная лампа

Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.

Что такое напряжение?

Напряжение — это давление от источника питания электрической цепи, которое обеспечивает движение заряженных электронов (ток) через проводящий контур, позволяя им выполнять полезную работу (например, обеспечивать свечение лампочки).

В кратком виде: напряжение = давление, оно измеряется в вольтах (В). Эта единица измерения названа в честь итальянского физика Алессандро Вольта (1745–1827 гг.), который изобрел вольтов столб, ставший предшественником современной бытовой батареи.

Ранее напряжение называлось электродвижущей силой (эдс). Поэтому в ряде уравнений, например в законе Ома, напряжение обозначается символом E.

Пример напряжения в простой цепи постоянного тока:

  1. В этой цепи постоянного тока переключатель замкнут (переведен во включенное положение).
  2. В источнике питания образуется напряжение («разность потенциалов» между двумя полюсами батареи), создавая давление, под действием которого поток электронов движется к отрицательной клемме батареи.
  3. Ток достигает лампочки, и лампочка начинает светиться.
  4. Ток возвращается в источник питания.

Различают напряжение переменного тока и постоянного тока. Отличия заключаются в следующем:

Напряжение переменного тока (на цифровом мультиметре обозначается символом ):

  • распространяется равномерными синусоидальными волнами, как показано ниже:
  • меняет направление с регулярными интервалами.
  • обычно вырабатывается электростанциями с помощью генераторов, которые преобразуют механическую энергию, производимую вращением под действием протекающей воды, пара, ветра или тепла, в электрическую энергию.
  • более распространено, чем напряжение постоянного тока. Электростанции подают напряжение переменного тока в организации и дома, где большинство устройств работает на напряжении переменного тока.
  • Основные источники питания различаются в зависимости от страны. Например, в США напряжение источников равно 120 В.
  • Некоторые бытовые устройства, например телевизоры и компьютеры, используют напряжение постоянного тока. Они используют выпрямители (например, массивный блок шнуре портативного компьютера), которые преобразовывают напряжение переменного тока в напряжение постоянного тока, а также переменный ток — в постоянный.

Генераторы преобразуют энергию вращательного движения в электрическую. Вращательное движение обычно возникает под воздействием текущей воды (гидроэлектрическая энергия) или пара, образующегося из воды при нагреве с помощью энергии газа, нефти, угля или ядерной энергии.

Напряжение постоянного тока (на цифровом мультиметре обозначается символами и ):

  • распространяется по прямой и только в одном направлении.
  • обычно вырабатывается источниками накапливаемой энергии, например батареями.
  • на источниках напряжения постоянного тока есть положительная и отрицательная клеммы. Клеммы определяют полярность в цепи. По полярности можно определить, является ли данная цепь цепью постоянного или переменного тока.
  • обычно используется в портативном оборудовании с питанием от батареи (фонарики, камеры).

Что такое разница потенциалов?

Напряжение и термин «разность потенциалов» зачастую взаимозаменяемы. Разность потенциалов правильнее назвать разностью потенциальной энергии между двумя точками цепи. Величина разности (выраженная в вольтах) определяет величину потенциальной энергии, доступной для перемещения электронов из одной точки в другую. От этой величины зависит, какая работа потенциально может быть совершена в цепи.

Например, бытовая щелочная батарея типа AA обеспечивает напряжение 1,5 В. Обычные бытовые розетки обеспечивают напряжение 120 В. Чем выше напряжение в цепи, тем выше способность приводить в движение большое количество электронов и выполнять работу.

Напряжение/разность потенциалов можно сравнить с водой в резервуаре. Чем крупнее резервуар и чем больше его высота (и, следовательно, возможная развиваемая скорость), тем сильнее будет способность воды оказать воздействие при открытии клапана, когда вода начинает течь, подобно электронам.

Почему нужно измерять напряжение

В большинстве случаев при проведении проверки технические специалисты знают, как должна работать цепь.

Цепи используются для передачи энергии на нагрузку: от небольших устройств и бытовой техники до промышленных двигателей. На нагрузках часто есть паспортная табличка, на которой указаны эталонные значения стандартных электрических параметров, в том числе напряжения и силы тока. Вместо паспортной таблички некоторые производители предоставляют подробную схему (техническую схему) всех контуров нагрузки. Стандартные значения могут содержаться в руководствах.

Благодаря этим значениям технический специалист понимает, какие показания следует ожидать при нормальной работе нагрузки. Показания цифрового мультиметра позволяют объективно определять отклонения от нормы. Однако и в этом случае технический специалист должен руководствоваться знаниями и опытом для определения причин, вызывающих подобные отклонения.

Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector