Вакуумные выключатели схема устройства
Вакуумные выключатели: устройство, принцип работы, установка
Недостатки вакуумных выключателей
1. Трудности разработки и изготовления,связанные с созданием специальныхконтактных материалов, сложностьювакуумного производства, склонностьюматериалов контактов к сварке в условияхвакуума.
2. Большие капитальные вложения,необходимые для наладки массовогопроизводства.
При массовом производстве стоимостьвакуумных выключателей всего на5-15% больше стоимости маломасляных именьше стоимости электромагнитных.Большая экономия при эксплуатацииделает эти выключатели высокоэффективными,что обусловливает их все более широкоераспространение.
Отключение выключателя
При подаче сигнала «ОТКЛ» блок управления формирует импульс тока, который имеет противоположное направление по отношению к току включения и меньшее амплитудное значение (интервал времени 4 — 5 на осциллограммах). Магнит 6 при этом размагничивается, привод снимается с магнитной защелки, и под действием энергии, накопленной в пружинах отключения 8 и поджатия 5 якорь 7 перемещается вниз, в процессе движения ударяя по тяговому изолятору 4, связанному с подвижным контактом 3. Контакты 1 и 3 размыкаются (момент времени 5 на осциллограммах), и выключатель отключает нагрузку.
Устройство и принцип действия
Вакуумные выключатели предназначены для совершения коммутационных операций в электроснабжающих сетях высокого напряжения. Конструктивно вакуумный выключатель состоит из трех отдельных полюсов или колонок (по одной на каждую фазу). Все колонки устанавливаются на одном приводе посредством опорного изолятора из полимера, фарфора или текстолита. У каждой из них имеются два вывода для подключения ошиновки.
Общий вид вакуумного автоматического выключателя
Устройство вакуумного выключателя.
Из картинки ниже видно, что внутри устройство состоит из двух контактов, подведенных под соответствующие потенциалы полюсов. Один из них выполняется подвижным, второй стационарным, как и в других типах выключателей. Силовые контакты вакуумного выключателя располагаются внутри герметичной камеры, способной сохранять вакуум в течении длительного периода времени (несколько десятков лет). Для чего в состав камеры включаются специальные металлические сплавы и керамические добавки. Именно этот элемент стал камнем преткновения для реализации такого выключателя в 30-е годы прошлого века.
Современные технологии предоставляют возможность сохранения вакуума внутри емкости, в том числе, с учетом динамических нагрузок, которые ей приходится претерпевать во время коммутаций. Для постоянного поддержания состояния сильно разреженной газовой среды, внутри вакуумной камеры, устройство комплектуется сильфонным компонентом. Он исключает возможность проникновения воздуха или другого газа внутрь вакуумной камеры при перемещении подвижного контакта.
Конструкция вакуумного выключателя
Принцип гашения электрической дуги.
При разрыве контактов между поверхностями возникает ионизация пространства. Если в воздушных выключателях с методом электромагнитного дутья эту ионизацию искусственно растягивают на несколько метров, а в элегазовых и масляных выключателях стараются погасить диэлектрическим материалом, то в вакуумных применяется другая технология. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное к выделению заряженных частиц. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла.
Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения, их место быстро занимает пустое пространство с высокой электрической прочностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Но чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.
Устройство и работа выключателя ВВ/TEL
Выключатель вакуумный серии BB/TEL состоит из трех полюсов, установленных на общем основании. Все три полюса имеют одинаковую конструкцию, изображенную на рис. 1 .
Рис. 1. Устройство выключателя ВВ/TEL
Привод вакуумного выключателя серии BB/TEL состоит из электромагнитов (по одному на каждую фазу), электрически соединенных между собой параллельно, и блока управления БУ.
Механически якори 7 приводных выключателей соединены между собой общим валом 10, который в процессе включения и отключения поворачивается вокруг своей продольной оси, и обеспечивает выполнение следующих функций:
- управление указателем положении выключателя «ВКЛ — ОТКЛ»;
- ручное отключение выключателя при аварийных ситуациях;
- управление контактами для внешних вспомогательных цепей с помощью постоянного магнита;
- предотвращение срабатывания выключателя в неполно-фазном режиме.
Типы вакуумных выключателей
Как и любая другая электротехническая продукция, вакуумные выключатели подразделяются на несколько типов, в зависимости от класса напряжения, для которого предназначен аппарат. Поэтому условно их можно подразделить на:
- Устройства на 6 – 10 кВ;
- Устройства на 35 кВ;
- Устройства на 110 – 220 кВ.
Вторым критерием является мощность отключаемого потребителя, в соответствии с которой модели отличаются по максимальному рабочему току или по мощности.
Особенности установки выключателя
Установка вакуумного выключателя выполняется в уже имеющиеся ячейки, шкафы КРУ, остающиеся из-под масляных или воздушных выключателей, или монтируются в новую ячейку на этапе строительства распредустройства, подстанции или электроустановки. Болтовые крепления к металлическим конструкциям должны плотно затягиваться, обеспечивая и неподвижность коммутационного аппарата при интенсивных динамических колебаниях.
Весь процесс должен осуществляться в строгом соответствии с требованиями, как указаний завода изготовителя, так и нормативных документов, регламентирующих работу устройств в соответствующей отрасли. Обязательными для применения в любых цепях являются нормативные величины, устанавливаемые ПУЭ. Где указаны расстояния от токоведущих частей до заземленных конструкций, электрические параметры и прочие требования к установке вакуумных выключателей.
Ошиновка производиться металлическими шинами из меди или алюминия, которые перед монтажом предварительно зачищаются для получения минимальных показателей переходного сопротивления.
После завершения установки и подключения управленческих цепей к блоку контроля выключателем или приводу, необходимо осуществить ряд манипуляций и проверок:
- Очистить поверхность наружных изоляторов от всевозможных засорителей для исключения возможности протекания токов утечки;
- Проверка работоспособности привода, ручное отключение и соответствие обозначения флажка на нем действительному положению –вкл/выкл;
- Испытание изоляционных свойств смонтированного устройства посредством подачи напряжения промышленной частоты;
- Измерение величины переходного сопротивления между контактами;
В случае хранения вакуумного устройства на складе более двух лет, перед подключением к коммутационным цепям необходимо производить комплекс испытаний, чтобы убедиться в прочности промежутка на случай отключения токов кз.
Ручное отключение выключателя
Ручное оперативное отключение выключателя осуществляется путем механического воздействия на кнопку ручного отключения, которая в свою очередь через толкатель, шарнирно связанный с валом 10 выключателя, воздействует через этот вал на якоря 7 электромагнитов привода. При этом разрывается магнитная система привода, ее магнитная энергия уменьшается, после чего механической энергии пружины отключения 8 оказывается достаточно для размыкания контактов 1 и 3 выключателя.
Кнопка ручного отключения одновременно выполняет функцию указателя положения выключателя «ВКЛ — ОТКЛ».
Ручное включение выключателя не предусмотрено. Для первого включения выключателя, когда на подстанции отсутствует питание цепей оперативного тока, разработан способ включения выключателя электрическим путем от автономного источника питания.
Как осуществляется эксплуатация устройства?
После ввода в эксплуатацию вакуумный выключатель обязательно проходит периодические осмотры и испытания – текущий и капитальный ремонт, профконтроль, осмотр. Которые устанавливаются правилами технической эксплуатации, а также заводскими инструкциями.
Помимо регламентных работ коммутационный агрегат может отключаться от аварийных нагрузок, что может существенно повредить рабочую поверхность контактов. Поэтому после срабатывания в аварийном режиме, обслуживающий персонал обязан произвести внеплановый осмотр коммутационного устройства на предмет выявления подгаров, оплавлений, пятен выброса металла и прочих дефектов, свидетельствующих о возможном снижении проводимости или изоляционных свойств, номинальных характеристик и т.д. Результаты осмотров вакуумного выключателя после аварийных отключений должны заноситься в соответствующий журнал.
Критерии выбора ВВ
При выборе конкретной модели обязательно учитываются следующие параметры:
- Напряжение электроустановки – в соответствии с которым определяется тип изоляции;
- Электродинамическая стойкость, в случае возникновения тока короткого замыкания;
- Термическая стойкость, при удаленных от места установки вакуумного выключателя авариях;
- Климатическое исполнение.
Производители и распространенные модели
Наиболее известными производителями вакуумных выключателей являются отечественные , «НПП Контакт», ОАО «Самарский трансформатор», «ПО ЭЛКО», «РЗВА» и другие. Из зарубежных: Siemens, ABB, HEAG.
В таблице ниже можно увидеть сравнительные характеристики некоторых наиболее популярных вакуумных выключателей.
Выключатель серии | Номинальное напряжение, кВ. | Номинальный ток, А | Ток отключения, А | Термическая стойкость, кА | Динамическая стойкость, кА |
ВВЭ-М-10 | 10 – 11 | 630, 1000, 1600, 2000, 2500, 3150 | 20; 31,5; 31,5; 40 | 20; 31,5; 31,5; 40 | 51, 81, 81, 128 |
BB/AST 10-12,5/1000 | 10 — 12 | 1000 | 12,5 | 12,5 | 32 |
BB/TEL-10-12,5/1000 У2 | 10 | 1000 | 12,5 | 12,5 | 32 |
15ADV20 AA3F1 | 13,8 — 15 | 1200 | 20 | 20 | 38 |
ВВЭЛ-110-20/1600 | 110 — 126 | 1600 | 20 | 20 | 41 |
Управление выключателем
Для контроля за положением контактов выключателя (вкл/выкл) используется отдельный электронный прибор. На нем располагаются необходимые для переключения кнопки и дисплей, отображающий текущее состояние выключателя.
При возникновении аварийной ситуации контроль над действиями переходит к системе РЗиА. Релейная защита подаст команду на выключение в случае перегрузки, КЗ или любых других проблем с питающей сетью или потребителем.
Включение выключателя
Исходное разомкнутое состояние контактов 1, 3 вакуумной дугогасительной камеры выключателя обеспечивается за счет воздействия на подвижный контакт 3 отключающей пружины 8 через тяговый изолятор 4. При подаче сигнала «ВКЛ» блок управления выключателя формирует импульс напряжения положительной полярности, который прикладывается к катушкам 9 электромагнитов. При этом в зазоре магнитной системы появляется электромагнитная сила притяжения, по мере своего возрастания преодолевающая усилие пружин отключения 8 и поджатия 5, в результате чего под действием разницы указанных сил якорь электромагнита 7 вместе с тяговыми изоляторами 4 и 2 в момент времени 1 начинают движение в направлении неподвижного контакта 1, сжимая при этом пружину отключения 8.
После замыкания основных контактов (момент времени 2 на осциллограммах) якорь электромагнита продолжает двигаться вверх, дополнительно сжимая пружину поджатия 5. Движение якоря продолжается до тех пор, пока рабочий зазор в магнитной системе электромагнита не станет равным нулю (момент времени 2а на осциллограммах). Далее кольцевой магнит 6 продолжает запасать магнитную энергию, необходимую для удержания выключателя во включенном положении, а катушка 9 по достижении момента времени 3 начинает обесточиваться, после чего привод оказывается подготовленным к операции отключения. Таким образом, выключатель становится на магнитную защелку, т.е. энергия управления для удержания контактов 1 и 3 в замкнутом положении не потребляется.
В процессе включения выключателя пластина 11, входящая в прорезь вала 10, поворачивает этот вал, перемещая установленный на нем постоянный магнит 12 и обеспечивая срабатывание герконов 13, коммутирующих внешние вспомогательные цепи.
Принцип работы вакуумного выключателя
Высоковольтные вакуумные выключатели
Для повышения качества поставляемой от электрических сетей энергии, распределительные устройства комплектуются современными высоковольтными выключателями с вакуумной дугогасительной средой. Благодаря качественному отличию от устаревших автоматических выключателей, вакуумная аппаратура используется и для вновь возводимых подстанций, и для замены коммутационного оборудования на уже существующих.
Типы вакуумных выключателей
Как и любая другая электротехническая продукция, вакуумные выключатели подразделяются на несколько типов, в зависимости от класса напряжения, для которого предназначен аппарат. Поэтому условно их можно подразделить на:
- Устройства на 6 – 10 кВ;
- Устройства на 35 кВ;
- Устройства на 110 – 220 кВ.
Выключатель рассчитан на:
- нормальный режим работы;
- аварийный, то есть должен выдерживать кратковременные токи короткого замыкания.
Принцип действия
Механизм гашения дуги в вакуумных выключателях основан на высокой электрической прочности и усиленных диэлектрических свойствах вакуума. В момент размыкания контактов в вакуумном промежутке возникает электрическая дуга, которая поддерживается за счет металла, испаряющегося с поверхности контактов. При переходе тока через ноль, происходит гашение дуги и восстановление диэлектрических свойств вакуумного промежутка, и дуга между разомкнутыми контактами больше не возникает. Из-за большой электрической прочности вакуума гашение дуги может произойти до перехода тока через ноль, это явление называют срезом тока. Срез тока негативно влияет на сеть, так как вызывает коммутационные перенапряжения, которые могут достигать огромных величин.
Конструкция
Вакуумный выключатель состоит из двух основных элементов: подвижного и неподвижного контактов. У прибора есть три полюса, на которые установлены пофазно встроенные электромагнитные приводы. Они размещены на одном основании. Фазные приводы, которые расположены внутри выключателя, соединены механически между собой общим валом, синхронизирующим фазы, предохраняющим от режимов неполных фаз, задействующим дополнительные контакты. Также он механически блокирует соседние распределительные устройства, управляет индикацией положения контактов выключателя.
Принцип работы
Вакуумный выключатель обладает определенным принципом работы.
Когда размыкаются контакты, в промежутке (в вакууме) ток коммутации создает электрический разряд – дугу.
Ее существование поддерживается за счет испаряющегося металла с поверхности самих контактов в промежуток с вакуумом.
Образованная парами ионизированного металла плазма – проводящий элемент. Она поддерживает условия протекания электрического тока. В тот момент, когда кривая переменного тока проходит через ноль, электрическая дуга начинает гаснуть, а пары металла фактически мгновенно (за десять микросекунд) восстанавливают электрическую прочность вакуума, конденсируясь на поверхностях контактов и внутренностях дугогасящей камеры.
В это время восстанавливается напряжение на контактах, которые к тому моменту уже разведены. Если остаются после восстановления напряжения перегретые локальные участки, то они могут стать источниками эмиссии частичек заряженных, что вызовет пробой вакуума и протекание тока. Для этого используют управление дугой, поток тепла равномерно распределяют на контактах.
Принцип действия вакуумного выключателя
Вакуумный выключатель призван обеспечивать:
- надежность прохождения электрического тока номинальной мощности при долговременной работе;
- возможность коммутаций электрооборудования при оперативных переключениях в автоматическом или ручном режиме;
- оперативную ликвидацию аварийных ситуаций в автоматическом режиме.
Две контактные пластины работают в вакууме, который образован при откачке газа из дугоносительной камеры. Таким образом, возникает повышенная электрическая прочность с усиленными диэлектрическими параметрами.
Во время работы между контактами появляется вакуумный промежуток. В нем после нагревания испаряется металл. Ток нагрузки вызывает образование электроразрядов, которые и создают дугу внутри вакуума. Она продолжает развиваться за счет отрыва паров металла. Затем образованные ионы создают плазму.
Конструкции вакуумных выключателей
Конструкции вакуумных выключателей близки к маломасляным и часто отличаются только тем, что имеют вакуумную дугогасительную камеру.
Существует много различных конструкций вакуумных дугогасительных камер.
Одна из распространенных конструкций (рис. 9.16) имеет два изоляционных цилиндрических кожуха 1, 2, снабженных по торцам металлическими фланцами 4 , 15.
Неподвижный контакт 12 при помощи токоввода 13 жестко крепится к фланцу 15, подвижный контакт 11 связан с фланцем 4 при помощи сильфона 5.
Токоподвод 7 подвижного контакта 11 перемещается в направляющих 6 корпуса 8, соединенного с фланцем 4.
Как правило, в конструкции ВДК имеются экраны 3, 9, 10, 14, выполняющие функции повышения электрической прочности камеры за счет выравнивания градиента напряженности электрических полей и защиты внутренних изоляционных частей от металлизации распыленным контактным материалом.
Как следует из рис. 9.14 (кривая 1), электрическая прочность контактного промежутка очень высока. Это приводит к тому, что расстояние между контактами при напряжениях до 35 кВ не превышает 5 мм.
Несмотря на то, что сильфоном создаются определенные усилия на контакт, общее контактное усилие с учетом токов КЗ 40—100 кА в ВДК может достигать 1000—4000 Н.
Вакуумные выключатели находят все более широкое применение, часто заменяя и вытесняя менее надежные и более металло- и материалоемкие масляные и электромагнитные выключатели.
Вакуумные выключатели схема устройства
Выключатели вакуумные предназначены для частых коммутаций электрических цепей при нормальных и аварийных режимах в комплектных распределительных устройствах (КРУ ) и камерах сборных одностороннего обслуживания (КСО) с поперечным расположением аппарата относительно сборных шин в электрических сетях трехфазного переменного тока частотой 50 Гц с напряжением 10 (6) кВ с изолированной или компенсированной нейтралью.
Выключатели соответствуют требованиям ГОСТ 687-78, ГОСТ 18397-86, КУЮЖ.674152.019ТУ.
В выключателях применена камера дугогасительная вакуумная КДВ2—10—20/1000 УХЛ2 по МИБД.686484.020ТУ.
Условия эксплуатации
1)выключатели изготавливаются в климатическом исполнении У, категория размещения 2 по ГОСТ 15150-69;
2)выключатели предназначены для работы на высоте над уровнем моря до 1000 м;
3)верхнее значение температуры окружающего воздуха при эксплуатации +55°С;
4)нижнее значение температуры окружающего воздуха при эксплуатации -45°С;
5)относительная влажность воздуха при температуре +25°С 100% с конденсацией влаги;
6)атмосферные конденсированные осадки – в условиях выпадения росы.
Структура условного обозначения выключателя
П Вид привода: (П — пружинно-магнитный)
П Поперечное расположение полюсов
10 Номинальное напряжение, кВ
20 Номинальный ток отключения, кА
1250 Номинальный ток, А
У Вид климатического исполнения по ГОСТ 15150-69
2 Категория размещения по ГОСТ 15150-69
Пример записи обозначения выключателей в других документах и (или) при заказе:
выключатель ВБПП–10–20/1250 У2 КУЮЖ.674152.019 ТУ – условное обозначение вакуумного выключателя на номинальный ток 1250А, номинальный ток отключения 20 кА, номинальное напряжение 10 кВ с пружинно-магнитным приводом, поперечным расположением полюсов, категория размещения по ГОСТ 15150-69, вид климатического исполнения по ГОСТ 15150-69.
Устройство и работа выключателя
Особенностью конструкции этого выключателя является поперечное расположение полюсов относительно сборных шин для перспективных ячеек КСО, что позволяет открыть удобный доступ к монтажу и обслуживанию.
Операции включения выключателя осуществляется за счёт тягового усилия пружины включения. Отключение выключателя (в том числе автоматическое отключение при токах короткого замыкания или перегрузках) осуществляется за счёт энергии, запасённой пружинами выключателя при включении.
Гашение дуги в выключателе осуществляется вакуумными дугогасительными камерами (КДВ). Электрическая дуга, благодаря специальной форме контактов, создающих собственное продольное (аксиальное) магнитное поле с диффузной формой горения дуги, распадается и гасится при переходе тока через ноль. Благодаря высокой электрической прочности вакуумного промежутка в течение долей микросекунд между контактами восстанавливается напряжение.
Выключатель состоит из трёх полюсов, закреплённых на корпусе выключателя. Все корпусные детали высоковольтной части выключателя выполнены из изоляционного материала, что позволяет встраивать его в ячейки с ограниченным пространством высоковольтного отсека. Каждый полюс содержит вакуумную дугогасительную камеру, механизм дополнительного поджатия контактов КДВ и токовыводы.
Выключатель оснащён пружинным приводом с низким потреблением тока. Пружинный привод состоит из электромагнита взвода пружины, пружины включения, электромагнита включения, блока механических защёлок, демпфирующего гидравлического устройства, электромагнита отключения и расцепителя от независимого источника. Электрическая схема блока питания и управления выключателем собрана на панели, закреплённой в корпусе привода.
Включение выключателя
В исходном положении контакты камеры дугогасительной вакуумной разомкнуты, выключатель удерживается отключающей пружиной в отключенном положении.
Оперативное включение выключателя производится нажатием кнопки «ВКЛ» или подачей напряжения на включающий электромагнит, при этом пружина включения, предварительно взведённая электромагнитом заводки или вручную, поворачивает вал привода. Рычаги, связанные с валом тяговыми изоляторами, замыкают контакты КДВ и создают усилие поджатия контактов КДВ. Одновременно при повороте вала производится взвод отключающей пружины, переключение блок—контактов узла контактного и постановка на механическую защелку. Происходит включение выключателя.
При взведении включающей пружины привода используется не двигатель как обычно, а электромагнит. После включения выключателя автоматически подается команда на электромагнит взвода пружины включения. Включённый выключатель с взведённой пружиной включения позволяет выполнить циклы АПВ: п. 1, 1а, 2 по ГОСТ 687-78.
Для ручного включения выключателя с пружинным приводом необходимо предварительно рычагом взвести включающую пружину. После чего производится как оперативное, так и неоперативное включение выключателя нажатием на кнопку «ВКЛ».
Отключение выключателя
При подаче сигнала на электромагнит отключения или на расцепитель от независимого источника тока тяги электромагнитов воздействуют на защелку. Блок защелок освобождает вал привода. За счет энергии, запасенной пружинами поджатия контактов КДВ блоков дугогасительных и отключающей пружины, вал привода выключателя возвращается в исходное положение. Происходит отключение выключателя. Механизм привода подготовлен к включению.
Ручное оперативное и неоперативное отключение выключателя осуществляется красной кнопкой «ОТКЛ», расположенной на панели выключателя.
Сертификация
Выключатели вакуумные типа ВБПП на номинальное напряжение 10 кВ, номинальные токи отключения 20 номинальные токи до 1600 А. Серийный выпуск КУЮЖ.674152.019 ТУ
Для оформления заказа необходимо заполнить опросный лист:
Электрическая часть электростанций — Вакуумные выключатели
Содержание материала
В последние годы, кроме хорошо себя зарекомендовавших масляных и воздушных выключателей, в энергетических системах начали применяться выключатели, действие которых основано на совершенно новых принципах гашения дуги. И хотя эти, так называемые вакуумные выключатели занимают пока очень скромное место среди выключателей высокого напряжения, они, несомненно, имеют большие перспективы для электрических станций и подстанций.
В этих выключателях контактная система помещена в высокий вакуум, вследствие чего они и получили название вакуумных.
Процесс отключения в вакуумном выключателе протекает следующим образом. В момент расхождения контактов площадь их соприкосновения уменьшается, плотность тока резко возрастает, металл контактов плавится и испаряется в вакууме. При этом между контактами образуется проводящий мостик, состоящий из паров металла электродов. Загорается так называемая вакуумная дуга, которая гаснет при первом же переходе тока через нуль. Электрическая прочность вакуума восстанавливается очень быстро, так как малая плотность газа в колбе выключателя обусловливает исключительно высокую скорость диффузии электрических зарядов из ствола дуги. Уже через 10 мкс после перехода тока через нуль электрическая прочность вакуума достигает своего полного значения 100 МВ/м. Если к этому времени раствор контактов окажется достаточным для того, чтобы электрическая прочность межконтактного промежутка стала больше восстанавливающегося напряжения, дуга погаснет окончательно. В противном случае произойдет повторный пробой промежутка и повторное зажигание дуги.
При отключении вакуумным выключателем малых токов (несколько ампер или десятков ампер) может произойти преждевременное снижение тока до нуля, до естественного перехода тока через нуль (срез тока), что объясняется очень быстрой деионизацией межконтактного промежутка. Срез тока сопровождается, как и в других выключателях, перенапряжениями.
Для надежности работы вакуумного выключателя и увеличения срока его службы весьма существенной является износостойкость контактов, которые распыляются во время горения дуги. При очень сильном распылении металла контактов может образоваться такое количество паров металла, что гашение дуги окажется невозможным. Опыт показал, что наиболее сильное распыление наблюдается у контактов из латуни и меди. Тугоплавкие металлы, такие, как вольфрам или молибден, распыляются сравнительно мало.
С увеличением отключаемого тока распыление металла контактов растет, причем быстрее, чем увеличивается ток.
Таким образом, для повышения отключающей способности вакуумного выключателя для контактов необходимо применять наиболее тугоплавкие материалы.
С другой стороны, повышение тугоплавкости контактов увеличивает ток среза, что неблагоприятно сказывается на отключениях, вызывая опасные перенапряжения. Наибольший ток среза возникает при контактах из вольфрама, и он в 2,5 раза меньше при контактах из меди.
Следовательно, для надежной работы вакуумных выключателей необходимы специальные материалы, обеспечивающие отключения больших токов и имеющие малый ток среза. К сожалению, металлов, удовлетворяющих одновременно обоим требованиям, нет, и поэтому широкое распространение получили вольфрам и молибден, которые допускают отключение токов свыше 4—5 кА, хотя при этом и возникают большие токи среза.
Современные вакуумные выключатели рассчитаны на отключение токов в пределах от 1 до 8 кА при напряжениях 3—20 кВ. Дугогасительная камера вакуумного выключателя представляет собою герметический вакуумный сосуд из металла и стекла, в котором поддерживается вакуум 10
4 Па. Корпус камеры может быть изготовлен не только из стекла, но и из других изоляционных материалов, которые вакуумно-плотно свариваются с металлом.
Внутри корпуса находятся два контакта: подвижный, соединенный с корпусом при помощи сильфона, и неподвижный. Ход контактов составляет всего 10—15 мм. Срок службы камеры (ресурс) очень велик, 100—250 тыс. операций. Для некоторых типов камер ресурс достигает 2 млн. операций включения и отключения.
Вакуумные выключатели находят уже теперь широкое применение в установках с частыми операциями включения и отключения: в электрических печах, трансформаторах с регулированием под нагрузкой, в качестве контакторов для управления мощными двигателями и т. д. Они используются в последовательном соединении в установках высокого напряжения (до 500 кВ) как выключатели нагрузки и для отключения холостого хода длинных линий.
В этом случае необходимо обеспечить равномерное распределение напряжения между отдельными камерами путем шунтирования их конденсаторами.