1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет автоматического выключателя по мощности двигателя

Расчет автоматического выключателя по мощности двигателя

Сайт технической поддержки

филиал ЗАО “НПО Севзапспецавтоматика”

Подбор шкафа управления по номинальному току электродвигателя

Номинальный ток шкафа (I ном ) выбирается по току управляемых электродвигателей из расчёта выполнения двух условий:

Условие 1: I ном > I р ;

Условие 2: I ном > I п / K x , где:

I р — рабочий (номинальный) ток электродвигателя, А

I п — пусковой ток электродвигателя, А

К х — коэффициент время-токовой характеристики автоматического выключателя шкафа, принимающий значения:

К х = 5 – для время-токовой характеристики “C”,

К х = 10 – для время-токовых характеристики “D” и “МА”.

Примечание: Автоматические выключатели с характеристикой “C” в шкафах управления двигателями систем противопожарной защиты сейчас практически не используются.
Автоматические выключатели с характеристикой “МА” (без теплового расцепителя) используются в шкафах управления исполнительными механизмами систем противодымной защиты (вентиляторами и клапанами).
Автоматические выключатели с характеристикой “D” используются в шкафах управления другими двигателями систем противопожарной защиты (насосами и задвижками).

Электродвигатель вентиляторного агрегата имеет номинальный рабочий ток (I р ) = 29,8А и кратность пускового тока (I п / I р ) = 12
(Отсюда пусковой ток I п = 29,8 × 12 = 357,6А).

Для управления вентилятором проектировщик уже выбрал тип шкафа, например ШК1101-ХХ-А2
(для использования в составе системы пожарной сигнализации .

Необходимо подобрать для выбранного шкафа исполнение по номинальному току.

По условию 1: I ном > I р ; I ном > 29,8А

В шкафах выбранного типа ШК1101-ХХ-А2 автоматические выключатели имеют время-токовую характеристику “МА” (из паспорта шкафа, раздел «характеристики электропитания»), отсюда К х = 10

По условию 2: I ном > I п / K x ; I ном > 357,6 / 10; I ном > 35,8А.
Из условий 1 и 2 следует, что I ном > 35,8А.

Поправка на температуру окружающей среды:

Номинальный ток автоматических выключателей нормируется для температуры внутри оболочки шкафа 30°С. При повышении температуры номинальный ток выключателя снижается, и для неотключения при протекании тока близкого к номинальному необходимо использовать автоматический выключатель с номинальным током бОльшей величины.

Принимаем, что из-за работы аппаратуры температура внутри шкафа может превысить наружную на 5°С. Если максимальная температура в помещении установки шкафа управления не будет превышать 25°С, то поправку на температуру окружающей среды можно не вводить.

Для эксплуатации оборудования при температуре окружающей среды выше 25°С, при расчёте необходимо увеличивать I ном на 1% на каждый градус Цельсия (°С) выше 25°С.

Пусть в нашем случае температура в помещении может достигать 35°С, тогда необходимо увеличить I ном на (35 — 25) = 10%.
Отсюда I ном > 35,8А × 1,10; I ном > 39,4А

Примечание:На практике расчёт температурной поправки обычно заменяют использованием коэффициента запаса 15-20%.
Точный расчёт возможен только при знании температурных характеристик конкретного применяемого типа автоматического выключателя.
Для автоматических выключателей с характеристикой “МА” температурную поправку можно не делать (т.к. нет теплового расцепителя).

По таблице вариантов исполнения из графы номинального тока шкафа ШК1101-ХХ-А2 (также см. гл. 3 паспорта шкафа):
…, 20А, 25А, 32А, 40А, 50А, 63А, … выбираем ближайшее большее значение, принимая I ном = 40А.

Значению тока I ном = 40А соответствует вторая цифровая группа 36 в наименовании шкафа.
Соответственно, по таблице вариантов исполнения, выбираем исполнение шкафа ШК1101-36-А2

Для автоматизации расчёта номинального тока можно воспользоваться калькулятором

Примечание: Данная методика подбора шкафов по соответствию тока вводного автомата току двигателя, не подходит для подбора шкафов со встроенным блоком питания, для управления приводами постоянного тока, и шкафов со встроенным преобразователем частоты.

Правильный расчёт автомата на 380 В по мощности

Современные системы защиты электропроводки от перегорания и воспламенения подразумевают использование автоматических выключателей и разделяются по типу сети на однофазные и трёхфазные. В частном секторе в большинстве случаев используются приборы второго типа, поэтому актуальным становится правильный расчёт автомата по мощности для 380 вольт, обеспечивающий надёжность и долговечность использования электрической сети.

  • Назначение и работа
  • Конструкция защитного модуля
  • Принцип действия
  • Характеристики устройства
  • Подбор мощности
  • Нюансы при расчёте

Назначение и работа

Первое автоматическое устройство, предназначенное для защиты электрической цепи от сверхтоков, было изобретено американским учёным, изучающим электромагнетизм, Чарльзом Графтоном Пэджем в 1836 году. Но лишь через 40 лет подобная конструкция была описана Эдисоном. Современный же тип защитных устройств был запатентован в 1924 году корпорацией Brown, Boveri & Cie из Швейцарии.

Новаторством конструкции стала многоразовость использования благодаря возможности включения модуля при его срабатывании нажатием одной кнопки. Преимущества по сравнению с плавкими предохранителями были неоспоримыми, при этом и точность работы автомата была намного лучше. При использовании устройства в сети, рассчитанной на 380 вольт, происходит отключение сразу всех фаз. Такой подход позволяет избежать перекоса уровней сигналов и возникновения перенапряжений.

Прямое назначение трёхфазного автоматического выключателя состоит в отключении линии при возникновении в ней короткого замыкания или превышения потребляемой мощности приборами. Модули защиты относятся к группе коммутационного оборудования и благодаря простым конструкциям, удобству использования и надёжности они широко применяются как в бытовых, так и в промышленных энергетических сетях. Обычно устройство предполагает ручное управление, но некоторые типы комплектуются электромагнитным или электродвигательным приводом, дающим возможность управлять ими дистанционно.

Некоторые пользователи ошибочно предполагают, что автомат защищает подключённые к нему приборы, но на самом деле это не так. Он никак не реагирует на виды и типы приборов, подключаемых к нему, а единственной причиной его срабатывания является перегрузка и появление сверхтока. При этом, если автомат не отключит линию, электропроводка начнёт нагреваться, что приведёт к её повреждению или даже воспламенению.

Выбор автоматического модуля защиты связан с возможностями электрической линии выдерживать ток определённой величины, что напрямую связано с материалом кабеля и его сечением. Иными словами, при выборе модуля главным параметром является мощность или максимальный ток, который приводит к срабатыванию автомата.

Конструкция защитного модуля

Несмотря на широкий ассортимент продукции, предлагаемый различными производителями, конструкции автоматических выключателей подобны друг другу. Корпус прибора выполняется из диэлектрика, устойчивого к температурам, и не поддерживает горение. На передней панели располагается рычажок ручного управления, а также наносятся основные технические характеристики.

Конструктивно корпус состоит из двух половинок, скрученных между собой болтами. В середине его находятся следующие элементы:

  1. Клеммы подключения — предназначены для обеспечения надёжного соединения с входящей и выходящей электрической линией.
  2. Подвижный и неподвижный силовой вывод — эти контакты служат для замыкания или размыкания нагрузочной цепи с силовой.
  3. Искрогасительная камера — при резком размыкании контактов между ними образуется дуга достаточно большой мощности, способная привести к повреждению элементов модуля. Поэтому для её гашения используется специальная камера, состоящая из вертикальных пластин, установленных в шахматном порядке. Искра, проходя через них, теряет свою мощность, а затем полностью гасится.
  4. Тепловой и электромагнитный расцепитель — именно их реакция на изменения параметров электрической линии и приводит к срабатыванию прибора защиты.
  5. Рычажный переключатель — используется ручной рычаг, взведение которого замыкает входящую и выходящую линию.
  6. Регулировочный винт — устанавливает порог срабатывания модуля. Настраивается в заводских условиях.
  7. Канал для выхода газов — при гашении искры тепловая энергия преобразуется в газ, который и выводится из устройства через специально сконструированный лабиринт.
Читать еще:  Сенсорный выключатель стекло с пультом

Именно конструкции расцепителей обеспечивают почти моментальное срабатывание автоматического выключателя. Электромеханический контакт реагирует на возникновение в защищаемой им цепи тока, параметры которого превышают номинальное значение. В конструкцию расцепителя входит катушка индуктивности с сердечником, положение которой фиксируется пружиной, а уже она связана с подвижным силовым контактом. Обмотки соленоида включаются последовательно нагрузке. Тепловой расцепитель представляет собой спрессованную полоску из двух металлов с разной теплопроводностью (биметаллическая пластина).

Принцип действия

После подключения к трёхфазному автомату силовой и нагрузочной электрических линий его включают с помощью перевода рычажка в верхнее положение. В результате происходит зацепление рычага через защёлку с включающим контактом. Образованное соединение обеспечивается за счёт смещения подвижной контактной группы относительно их держателя.

При нормальной ситуации ток проходит через соприкосновение силового и подвижного контакта. Затем поступает на биметаллическую пластину и обмотку соленоида, а с неё уже попадает на клемму и подключённую к автомату нагрузку.

Если через выключатель начинает протекать ток со значением, превышающим допустимое, то биметаллическая пластина начинает нагреваться. Из-за разного теплового расширения металлов она изгибается, разрывая в итоге контакт. Сила тока, при котором происходит разрыв соединения, зависит от толщины пластины. Термомагнитный расцепитель характеризуется медленной работой, хотя и может фиксировать даже небольшие изменения величины тока. Его настройка осуществляется на заводе с помощью изменения расстояния между пластиной и подвижным контактом. Для этого используется регулировочный винт.

Но для тока, который мгновенно увеличивает своё значение, скорость реакции биметаллической пластины будет крайне низкой, поэтому вместе с ней используется и соленоид. В нормальном состоянии сердечник выталкивается пружиной и замыкает контакт автомата. При аномальном значении сигнала в витках катушки стремительно увеличивается магнитное поле, потоки которого втягивают сердечник внутрь, преодолевая действие пружины, а это приводит к разрыву цепи.

Срабатывание электромагнитного расцепителя происходит за доли секунды, при этом на токи, незначительно превышающие номинальные, он не реагирует. Одновременно с разъединением всей трёхфазной линии опускается и рычажок, который опять понадобится перевести в верхнее положение для подключения нагрузки к сети.

Характеристики устройства

Правильный подбор 3-фазного автомата заключается не только в определении условий его эксплуатации, но и по мощности и типу нагрузки, которая будет к нему подключаться. Неверно подобранная мощность модуля приводит к ухудшению защиты электропровода, при этом такое устройство и само может стать источником аварийной ситуации.

Но всё же, как бы ни было важно правильно подобрать мощность, автоматические приборы характеризуются и другими техническими параметрами, влияющими на их работу. К основным из них относят:

  • рабочее напряжение — определяет величину, при которой автомат защиты работает без ухудшения своих параметров (обычно разрешается перепад в диапазоне 15%);
  • номинальный ток — параметр, непосредственно связанный с мощностью, обозначает пограничное значение тока, при котором происходит срабатывание защитного модуля;
  • потребляемая мощность — автоматические приборы относятся к устройствам с низким энергопотреблением;
  • износостойкость — обозначает количество гарантируемых циклов включения и отключения автомата;
  • минимальная и максимальная рабочая температура — диапазон, в котором технические параметры защитного модуля не изменяются;
  • номинальная отключающая способность — наибольшее значение нагрузки, при котором выключатель сможет разорвать линию с сохранением своей работоспособности;
  • время срабатывания — определяет интервал, в течение которого происходит отключение нагрузки от силовой линии;
  • времятоковая характеристика — разделяется на классы, каждый из которых соответствует току мгновенного расцепления (например, тип С применяется для тока, превышающего значение номинального 5-10 раз).

Кроме технических параметров, автоматические приборы характеризуются и качественными показателями. К наиболее распространённым относят тип привода, способ присоединения внешних проводников, исполнение отсечки и другие.

Подбор мощности

Существует два способа определения необходимой мощности для 3-фазного автомата. При этом один дополняет другой, а не исключает его. Первый метод связан с нахождением суммарного значения потребляемой энергии и нагрузкой, а второй — с сечением электропроводки.

Исходя из определения, что автомат защищает не оборудование, а электропроводку, подбирать мощность нужно, ориентируясь на параметры последней. Это верно, но лишь до того момента, пока не будет запланирована модернизация сети. Например, существующая проводка в доме рассчитана на 1,5 квадрата. Согласно техническим характеристикам медная проводка такого диаметра сможет выдержать долговременный ток не более 10 ампер. Соответственно, наибольшее одновременное потребление энергии приборами, подключёнными к выходу автомата, не должно превышать 3,8 кВт. Это значение получается из простой формулы для нахождения мощности — P = U*I, где:

  • P — наибольшая допустимая мощность потребления, Вт;
  • U — напряжение трёхфазной сети, 380 вольт;
  • I — максимальный ток, выдерживаемый проводкой, А.

Полученное число говорит о том, что одновременно суммарно подключённая в линию нагрузка не должна превышать это значение, т. е. при включении бойлера на 2 кВт ничего страшного не произойдёт. Но если же к этой линии подключить электропечь в 3 кВт, то проводка не выдержит и загорится, поэтому для предотвращения аварии необходимо установить автомат на 10 А, позволяющий нагрузить линию всего до 2,2 кВт.

Преимущество использования трёхфазного автомата в том, что к нему одновременно можно подключить три линии, при этом величина номинального тока будет определяться суммированием мощностей всех фаз. Таким образом, для автомата на 380 вольт она составит 6,6 кВт, а в случае подключения нагрузки типа «треугольник» — 11,4 кВт. То есть для приведённого примера, если нет возможности развести линию на разные фазовые выходы устройства защиты, понадобится приобрести автомат на 6 А.

Если же планируется модернизация проводки или используется кабель толстого сечения, то расчёт можно произвести исходя из потребляемой мощности нагрузки. Например, если нагрузка каждой фазы не будет превышать 4 кВт, то номинальный ток рассчитывается как сумма мощностей плюс 15–20% запаса (I = 4*3 = 12 А + запас = 14 А), поэтому наиболее подходящим устройством в данном случае будет автомат на 16 А.

Нюансы при расчёте

Для упрощения нахождения мощности в качестве запаса принято использовать не процентное содержание, а умножение на коэффициент. Это дополнительное число принято считать равным 1,52.

На практике же редко получается нагрузить все три фазы одинаково, поэтому, когда одна из линий потребляет большую энергию, расчёт номинала автоматического выключателя выполняется по мощностям именно этой фазы. В таком случае берётся во внимание наибольшее значение потребляемой энергии и умножается на коэффициент 4,55, и тогда можно будет обойтись без использования таблиц.

Таким образом, при расчёте мощности в первую очередь учитываются параметры электропроводки, а затем и энергия, потребляемая защищаемым автоматом электрооборудования. Здесь берётся во внимание и верное замечание из правил устройства электроустановок (ПУЭ), указывающее, что установленный автоматический выключатель должен обеспечить защиту самого слабого участка цепи.

Расчет автоматического выключателя по мощности двигателя

Для пуска, реверсирования, принудительной остановки противотоком асинхронных электродвигателей электрики используются контакторы и магнитные пускатели. От правильности выбора коммутационной аппаратуры зависит, как и безотказность системы в целом, так и электробезопасность обслуживающего персонала.

Читать еще:  Этм выключатель одноклавишный для скрытой установки

Выбор пускателя и избыточным коммутируемым током ведет к большим финансовым затратам, при его коммутации слышны шлепки большей громкости, чем те что издают маленькие пускатели. Недостаточные по коммутируемой мощности пускатели долго не прослужат, будут греться, и подгорать клеммники и контакты. В результате переходное сопротивление контакта будет расти до тех пор, пока контакт не исчезнет полностью, что приведет к преждевременной замене аппарата.

Автоматические выключатели также должны быть правильно подобраны, особенно при тяжелом пуске двигателя. Слишком чувствительный автомат будет выбивать при пуске, а если он наоборот взят с излишним запасом по току, то в аварийной ситуации может и не отреагировать, что приведет к повреждению кабеля, обмотки двигателя вплоть до возгорания.

Пуск для электродвигателя сопровождается повышенным током в период разгона его до номинальных оборотов, в случае перегрузки и нехватки мощности двигателя для вращения исполнительных механизмов возможно пониженное число оборотов с повышенными токами, в плоть до того, что он вообще не начнет раскручиваться. И наоборот если мощность двигателя избыточна, то потребляемый им ток будет ниже номинального.

Из-за вышеперечисленных причин и появляется необходимость правильного подбора пусковой и защитной аппаратуры в виде магнитных пускателей, контакторов, тепловых реле и автоматических выключателей.

Автоматические выключатели устанавливаются до магнитного пускателя, чтобы в случае необходимости полностью обесточить систему, как силовую цепь, так и цепь управления (питания катушки).

Вместо автоматических выключателей могут использоваться плавкие вставки или предохранители, но в последнее время такие решения встречаются реже, чем раньше. Это усложняет обслуживание и вызывает необходимость иметь в запасе хотя бы комплект предохранителей.

Выбор магнитного пускателя

Магнитные пускатели выпускаются на определенный номинальный ток, из ряда: 6.3 – 10 – 25 – 40 – 63 – 100 – 160 – 250

Часто их разделяют не по токам, а по величинам от 0 до 7, чем больше ток (или величина пускателя) тем больше его габариты и площадь контактов. Опытный электромонтер может отличить по размеру корпуса, конструкции дугогасителя и габаритам контактных площадок примерный коммутируемые ток и напряжение.

Однако если номинальный ток пускателя соответствует току двигателя, это еще не значит, что их можно использовать в паре. Если такое понятие как категория применения, она характеризует режим работы коммутируемой аппаратуры, частоту и условия коммутации. Иначе говоря – это способность переносить пусковые токи. Пусковые токи асинхронного двигателя могут превышать номинальные и в 10 раз, это зависит от условий пуска, напряжения в сети и прочих факторов.

Категории применения обозначаются: «АС-номеркатегории». Сводная таблица величин и категорий применения для магнитных пускателей расположена ниже.

Из неё нас интересует строка «АС-3 – управления двигателями с короткозамкнутым ротором (пуск, отключение без предварительной остановки)». Из этого очевидно, что коммутационные аппараты с такой категорией созданы для того, что бы включать и отключать электродвигателя. Они выдерживают прямой пуск.

Далее нужно определиться с номинальным током пускателя. Для этого нам нужно знать технические характеристики коммутируемого двигателя, а именно:

  • η – КПД %,
  • cos Ф – коэффициент мощности,
  • P – мощность двигателя номинальная;
  • U – рабочее напряжение (коммутируемое);

Тогда номинальный ток пускателя равен:

Для быстрых расчетов иногда применяют другую методику, когда мощность двигателя умножают на 2 и получают номинальный ток (приблизительно).

Далее нужно определить пусковой ток, в справочниках это указывается либо как «k» либо как «Iп/Iн». Это кратность или соотношение пускового тока к номинальному. Показывает, насколько ток в момент пуска превышает номинальную величину.

Пускатель с категорией применения АС-3 может коммутировать ток в 5-7 раз больше чем номинальный, для чего это сказано я покажу при расчетах ниже.

Выбираем пускатель

Допустим, у нас есть асинхронный двигатель с мощностью 2.2 кВт типа 4АМ100L6У3. На его шильдике написано, что кпд 81.0%, коэффициент мощности – 0.73, в интернете я нашел его технические данные, чтобы узнать кратность пускового тока, она оказалась – 5.5

1. Быстрый способ: IН=2.2*2 = 4.4А

2. Сложный способ: IНОМ=2200/(380*0.81*0.73*1.73)=5.6А

Результаты такого расчета дали больший ток.

Теперь считаем пусковой ток: IП=5.6*5.5=30.8А

Подбираем пускатель, с номинальным током более чем 5.6 А, с категорией применения АС-3. В результате обзора рынка, нам подходит пускатель ПМЕ 111 на 10А с тепловым реле.

Выбор автоматического выключателя

Автомат может сработать при пуске или затяжном пуске электродвигателя, когда потребляемый ток значительно превышает максимальный. В автоматическом выключателе за защиту отвечают два узла:

1. Электромагнитный расцепитель. Срабатывает при пиковом токе перегрузке. Этот ток зависит от типа автомата.

2. Тепловой расцепитель. Срабатывает при незначительном но длительном превышении номинального тока.

Номинальный ток двигателя у нас 5.6 А, значит нам нужен автомат не меньше этого значения. Типы автоматов куказывают на доустипое превышение по току в пике:

  • тип B – 3-5 раз;
  • тип C –5-10 раз;
  • тип D – 10-50 раз.

Так как у нас пусковой ток в 5.5 раз больше чем номинальный, это значит что нам подходит автомат типа С и D. Например, автоматический разъединитель EZ9F34306 Schneider Easy9, рассчитан на 6 А и его тип C, позволит выдержать пусковые токи до 60 А.

Но такой автомат будет работать на пределе да и реальная уставка по току может быть ниже 5.5, т.к. тип С находится в пределах 5-10, нужен запас по току хотя бы в 20%.

Поэтому лучше установить автоматический выключатель на тот же ток или немного больший, но типа D, например ИЭК 6-8А ВА47-29

Или на ток 10А с типом C, например PL4-C10/3 Moeller / Eaton

Требования к автомату заключаются в том, чтобы он стабильно выдерживал номинальный ток, и его не выбило при пуске. Если планируется режим работы двигателя с частыми включения и выключениями лучше использовать автомат типа D, он менее чувствителен к всплескам тока.

Заключение

Автоматический выключатель нужен для защиты питающего кабеля и дополнительной защиты двигателя, в случае затяжного пуска или заклинивания вала, дополнительно лучше использовать тепловую защиту. Магнитный пускатель должен выдерживать как напряжение, так и ток, который он будет коммутировать.

Электродвигатель должен быть исправен, отсутствовать витковые замыкания, а его вал должен свободно вращаться. В случае пуска двигателя под нагрузкой лучше брать коммутационную аппаратуру с запасом до 2-х раз для уменьшения вероятности преждевременного подгорания контактов и ложных срабатываний автоматического выключателя.

Питающий кабель должен соответствовать номинальному току, с учетом пусковых токов, как и способ соединения кабеля (использование гильз, наконечников, клеммников и прочего). Состояние всех соединений должно быть в норме – отсутствовать окислы, нагар и прочие механические дефекты, которые могут уменьшить площадь прилягания контакта.

Ранее ЭлектроВести писали, что т урецкая компания Karsan презентовала электрическую версию своего 8-метрового автобуса Atak.

Защита электродвигателя. Виды устройств

Особенностью защиты электродвигателя от перегрузок и короткого замыкания является повышенный пусковой ток, который может в семь раз превышать номинальное значение. Самые сильные перегрузки на старте свойственны асинхронным двигателям с короткозамкнутым ротором, которые наиболее используемые в быту и на производстве, поэтому правильная их защита, а также предохранение электропроводки цепей питания электродвигателей являются особенно актуальными.

Читать еще:  Установка накладных розеток выключателей

В бытовой электротехнике проблема с большими стартовыми токами электродвигателей решена при помощи автоматических выключателей, у которых отключение (отсечка) происходит не сразу после превышения номинального тока, а спустя некоторое время.

Данного отрезка времени, который зависит от время-токовой характеристики автомата защиты, должно хватить, чтобы вал электродвигателя раскрутился до рабочих оборотов, и потребление тока снизилось до номинального уровня. Но автоматические выключатели не обладают гибкостью точной настройки, поэтому для защиты электрических двигателей применяются специальные устройства защиты.

Функции и виды устройств защиты электродвигателей

Современные защитные устройства, или другими словами, автоматы защиты электродвигателя, (мотор автоматы), часто совмещаются в одном корпусе с коммутационными аппаратами запуска (пускателями) и выполняют такие функции:

  • Защита от тока короткого замыкания в цепи питания или внутри электродвигателя;
  • Защита от длительных перегрузок, связанных с превышением механической нагрузки на валу двигателя;
  • Предохранение от асимметрии (дисбаланса) фаз, или обрыва фазного провода;
  • Тепловая защита от перегрева двигателя, осуществляемая при помощи дополнительных термодатчиков, установленных на кожухе или внутри электродвигателя;
  • Предохранение от некачественного напряжения;
  • Обеспечение выдержки времени для охлаждения электродвигателя после его аварийной остановки после перегрева;
  • Индикация режимов работы и аварийных состояний;
  • Опционально – отключение при исчезновении нагрузки на валу (например, для водяных насосов);
  • Совместимость с автоматическими системами контроля и управления.

Ранее и до недавнего времени наиболее используемой схемой защиты электродвигателей было подключение в корпусе пускателя теплового реле, последовательно с контактором. Биметаллическая пластина теплового реле при длительной перегрузке нагревается и прерывает цепь самоподхвата контактора. Кратковременное превышение номинальной нагрузки при запуске мотора является недостаточным для нагрева и срабатывания биметаллической пластины. Более подробно о тепловом реле и его подключении можно прочитать в соответствующем разделе данного ресурса.

Выбор автоматического выключателя

Поскольку первые две функции могут осуществляться обычными автоматическими выключателями, многие пользователи применяют их для защиты своих электродвигателей. Основным недостатком такого способа является отсутствие защиты от дисбаланса, обрыва фаз и скачков напряжения. Выбор автомата защиты осуществляется по его время токовой характеристике и по максимальному пусковому току электродвигателя.

Чтобы правильно подобрать автоматический выключатель по категории и номинальному току, нужно изучить его время токовую характеристику, о которой подробно рассказывается на одной из страниц данного сайта. Категории автоматов (А, B, C, D) определяются соотношением тока отсечки электромагнитного расцепителя к номинальному значению. Нужно иметь в виду, что время токовая характеристика категории не зависит от номинала автоматического выключателя.

Для предотвращения ложного срабатывания автоматического выключателя при запуске электродвигателя необходимо, чтобы кратковременный пусковой ток (Iпуск) не превышал значение отсечки (мгновенного срабатывания, Iмгн.ср) автомата. Отношение пускового (Iпуск) и номинального тока (In) можно узнать из бирки или паспорта электродвигателя, максимальное значение Iпуск/ In=7.

Если известна только мощность электродвигателя, то рассчитать номинальный ток можно по формуле In= Рn/(Un*√3*η*cosφ), где Рn – мощность, Un – напряжение, η – КПД, cosφ – коэффициент реактивной мощности двигателя.

Практический расчет защиты электродвигателей

На практике применяют поправочный коэффициент надежности Kн, который для автоматов с In 100A принимают Kн=1,25. Поэтому должно соблюдаться условие Iмгн.ср ≥ Kн * Iпуск. Вначале автомат выбирают, исходя из наиболее близкого значения номинального тока автоматического выключателя IAB (указывается на корпусе) к рабочему току двигателя (In). Необходимое условие: IAB > Inт, где Кт = 0,85 – температурный коэффициент, если автомат устанавливается в шкафу или щитке, иначе Кт=1.

Например, имеется двигатель мощностью 5,5 кВт, η = 85%=0,85; cosφ = 0,8; Iпуск/ In = 7. Вначале нужно рассчитать I = Рn/(Un*√3*η*cosφ) = 5500/(380*√3*0,85*0,8) = 12,28 (А). Допустим, автомат устанавливается в шкаф, Кт = 0,85, значит Inт = 12,28/0,85 = 14,44 (А). Наиболее близким является автоматический выключатель на 16А, категории С, (ток мгновенного срабатывания в десять раз превышает номинальное значение).

Теперь нужно проверить условие Iмгн.ср ≥ Kн * Iпуск. Мгновенное срабатывание защитного автомата наступает при Iмгн.ср = 16*10 = 160 (A), пусковой ток Iпуск= In*7 = 12,28*7 = 85,96 (А). Умножаем на Kн (1,4) — 85,96*1,4 = 120,3 (А). Проверяем условие 160 ≥ 120,3 — это значит, что автомат выбран верно. Для упрощенных расчетов, можно принимать номинальный ток двигателя, равным удвоению его мощности, выраженной в киловаттах.

Универсальный блок защиты электродвигателей

На рынке электротехнического оборудования все большую популярность набирает защита электродвигателя при помощи универсальных устройств защиты, так называемых мотор автоматов, которые выполняют все приведенные выше функции защиты. Данные устройства имеют модульную конструкцию и устанавливаются на DIN рейку и управляют работой силовых контакторов. Кроме приведенных функций, некоторые мотор автоматы позволяют точно регулировать различные параметры защитного отключения.

Существует много разновидностей современных мотор автоматов, которые различаются коммутируемой мощностью, набором функций, способом управления, схемой подключения и внешним видом. Чтобы выбрать подходящий аппарат защиты для конкретного электродвигателя, необходимо знать его параметры номинального и пускового тока, а также нужно определиться с требуемым набором защитных функций и опций.

Стоимость мотор автоматов прямо пропорциональна мощности электродвигателя и функциональным возможностям защиты. Мировыми лидерами по производству защитных мотор автоматов являются такие известные бренды: Schneider Electric, ABB, IEK, Novatek electro, и другие.

Приведенный на рисунке ниже автомат защиты двигателя (универсальный блок) позволяет настраивать номинальный и пусковой ток электродвигателя, допустимые пороги напряжения, может отслеживать механическую нагрузку на валу электродвигателя. Также осуществляется контроль за качеством изоляции обмоток электродвигателя с возможностью установки запрета на включение.

Постоянный мониторинг множества параметров работы позволяет продлить срок эксплуатации двигателя и приводимого в действие оборудования. Специальный дополнительный блок обмена информацией позволяет подключить устройство к автоматическим системам контроля.

Защита электромоторов на производстве

Очень часто, в момент включения мощных потребителей электроэнергии (P>100кВт) на мощных производствах во всей электросети, подключенной к трансформаторной подстанции, напряжение опускается ниже установленного минимума.

При данном кратковременном падении напряжения рабочие электромоторы не отключаются, но теряют обороты. При возобновлении нормального напряжения двигатель снова начинает набирать обороты, то есть работать в режиме запуска (перегрузки). Данное явление называют самозапуском.

Если биметаллическая пластина автоматического выключателя или термореле была достаточно прогрета из-за продолжительной нормальной работы электродвигателя, то в режиме самозапуска тепловой расцепитель может сработать, вызвав ложное срабатывание.

Для мощных электродвигателей на предприятиях для поддержания нормального режима работы, в том числе и после самозапуска, применяют релейную защиту с трансформаторами тока, включенными в цепь питания.

Отклонения от нормы в силовых проводах электродвигателя с подключенными последовательно первичными обмотками токовых трансформаторов используются для срабатывания реле защиты, которые подключатся к вторичным обмоткам токовых трансформаторов по специальным схемам. Сложные расчеты данных мощных систем защиты осуществляются штатными сотрудниками, заведующими энергоснабжением предприятия, поэтому теория производственной электротехники не входит в тему данной статьи.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты