Ударит ли током если взяться за один провод розетки

Ударит ли током если взяться за один провод розетки

Почему ноль не бьет током?

Доброго времени суток. Несколько месяцев меня мучает вопрос. При работающей люминесцентной лампе (энергосберегайке) я коснулся одной рукой нулевого провода (оголенного), причем не просто коснулся, я держался за него несколько секунд. При этом я не почувствовал ни покалывания, ничего. И тут мои знания расходятся. На сколько я понимаю работу переменного тока, фаза и нуль в розетке меняются местами с определенной частотой. Отсюда вопросы:

  1. Почему отвертка индикатор горит только на одном контакте (на фазе), если движения тока меняется?
  2. Продолжая первый вопрос. Почему мультиметр при подключении + (плюс) к фазе показывает 220 вольт, а при подключении к фазе — (минус, gnd) мультиметр показывает -220 вольт. Т.е. переменный ток в розетке все таки имеет минус?
  3. И отсюда самый главный вопрос. Насколько безопасен этот самый минус в розетке (нуль)? Можно ли при работе потребителя без вреда для здоровья за него держаться? А если нет, можно ли его как-то обезопасить? Чисто теоретически, что можно сделать, чтобы держаться за оголенный нуль стоя в ванне с водой, может повесить на провод диод? )) Хочу закрыть для себя вопрос про этот самый нуль и понять повезло мне, что я держась за провод был изолирован резиновой подошвой кроссовок или что нуль в розетке действительно безопасен при любых условиях (нагрузках).

11 комментариев

Здравствуйте! Удар током происходит, если есть путь прохождения тока. Если вы стояли на поверхности, которая не проводит ток, то при прикосновении, хоть к нулевому, хоть к фазному проводнику не будет удара током, так как нет пути прохождения тока. Но если прикоснуться одновременно к двум проводам, то получите удар током, так как в этом случае будет путь прохождения тока между руками.
Переменный ток – электрический ток, который в течение времени изменяется по величине и направлению. Ток по проводникам протекает, если к ним подключена нагрузка. Если нет нагрузки, то ни по нулевому, ни по фазному проводнику ток не течет.
1. Индикаторная отвертка показывает наличие потенциала – на фазе потенциал есть, на нулевом проводнике потенциал нулевой.
2. Мультиметр при измерении напряжения в сети переменного тока показывает 220 В независимо от того, как вы подключите щупы. В сети постоянного тока будет показывать 220 В, а если щупы поменять местами, то -220 В.
3. Если нагрузка не подключена, то по нулевому проводнику не протекает ток, на нем нет опасного потенциала. Но при подключении минимальной нагрузки по данному проводнику начинает протекать ток и если к нему прикоснуться и при этом будет путь прохождения тока (например, через ноги), то вы получите удар током. И если между нулевым проводником и ванной с водой будет разный потенциал, то это также приведет к поражению электрическим током. Ноль в электропроводке служит исключительно для питания нагрузки и во избежание негативных последствий к нему не следует прикасаться.

На первый вопрос Вы толком не ответили , потому как теперь требуется разъяснение что такое потенциал – чем он собственно отличается от фазы и почему его нет на нуле ? Мне понятнее не стало , увы…

Я для себя нашёл объяснение. Фаза как бы везде просто она разрезана и ты все время присоединён к одному концу провода ( это земля ) ты стоишь на ней и соотвественно присоединён к нулю . При касании к фазному проводу тебя бьет из подошвы так же как и с розетки . А вот если поднять дом в воздух получается будет не важно где что . Можно штырь с фазой забить в стену и все будет наоборот. Только интересно тогда как работает контрольная отвертка если человек изолирован .

Правда ли, если держаться за провода не касаясь земли, то не ударит током?

Недавно смотрел фильм, и в нём главные герои перебиролись по электрическим проводам под напряжением, но не касались при этом земли. Насколько это может быть правдой ?

Ответы:

Да, так есть. Более того, при незаземленной нейтралитет можно и на земле стоять.

Воздушные линии часто чинят под напряжением.

Видели машину для ремонта трамвайных или троллейбусных проводов? Там такая платформа на изоляторах на крыше. Это оно и есть.

Птицы садятся на провод и их не убивает. Для того, чтобы ток прошел через тело и поразил птицу, животное или, не дай бог, человека, нужно коснуться двух проводов с разными потенциалами или провода и земли. И даже касание одного проводника двумя руками может убить, если руки расставить пошире, а напряжение в проводе очень большое. Если оборванный провод лежит на земле, то при приближении к нему тоже может убить, если на расстоянии одного шага возникает большая разность потенциалов, так и называют шаговый потенциал. В этом случае надо выбираться из этой зоны прыжками на сомкнутых ногах.

Всё зависит от того за какие провода и как взяться.

Если одной или обеими руками держаться за один провод, даже находящийся под напряжением и при этом не касаться других проводов или токопроводящих предметов, которые соединены с проводом другой фазы или «земли», то поражения током не будет.

Если стоять на одном проводе или держаться за него и касаться при этом другого провода той же фазы, поражения электрическим током так же не последует.

Так же не ударит током, если держаться за провод молниеотвода, при условии, что одновременно не касаться проводов находящихся под напряжением.

В общем, если спрыгнуть или запрыгнуть на провод, находящийся под напряжением и касаться только его, то можно остаться живым, конечно, если не сломаешь шею или позвоночник, спрыгивая на землю.

Был старый советский фильм (1961 года) «Карьера Димы Горина», в котором совсем ещё молодой Александр Демьяненко (24 года) играл главного героя. В конце фильма был эпизод, где главный герой и его любимая девушка идут по проводам навстречу друг другу. Если Вы имеете в виду этот фильм, то: Во-первых, провода не были под напряжением. Во-вторых, это были три параллельных провода, несущие ОДНУ И ТУ ЖЕ ФАЗУ, т.е. объединённые друг с другом перемычками, и было три таких тройки проводов (для трёх фаз).

Если Вы имеете в виду какой-то другой фильм, то там ситуация наверняка такая же, т.е. люди касались только одного провода (одной фазы). Если же явно они касались разных фаз, то это просто обман.

А если представить себе, что человек например, перебирается по проводу, как альпинист, т.е. повиснув на нём и руками и ногами, то такое конечно возможно, но это середина процесса перебирания по проводу под напряжением. А как же начало и конец? Ну ладно, если провод не очень высоко над землёй, с него можно просто спрыгнуть. А как попасть на провод под напряжением? Если только скинуть человека на провод с вертолёта?

Читать еще:  Почему вилку розетку можно вставлять любой стороной

Это правда для того, чтобы человека ударило током нужно коснуться 2 проводов или земли.

Очень правильно подмечено про птиц на проводах птицы сидят на одном проводе их ток не бьет.Например электрики многие подключают под напряжением беруться руками за один провод любой и их не бьет током хотя это все индивидуально и зависит от сопротивления человеческого тела которое в каждого разное.Многие наверное видели типа фокусов с высоким напряжением когда это напряжение несколько тысяч вольт пропускают по рукам и видно дуговой розряд.Это просто у людей хорошое сопротивление тела.я лично могу свободно вставить один гвоздь в розетку затем второй взяться руками за эти гвозди и меня ток не убьет только слегка пощипывает причем чем сильнее руками сжимать гвоздь тем слабее это пощипывание

Если идут 2 провода то это идут фаза и ноль и если за них схватиться то пришибет моментально — вся суть тока и есть в том , что электроны из фазы бегут на выход в ноль , если схватиться руками за такие провода то электроны через Вас побегут из фазы в ноль .

Всё зависит от самих проводов. В общем случае, если не касаться земли ничего не будет, если провод один.

В ЛЭП чаще всего применяются провода без изоляции. В этом случае если взяться за один провод иине касаться земли, током не ударит. Но если взяться за два провода одновременно, будет бить током. Причем напряжение будет минимум 380 вольт.

Что касается проводов в изоляции, их можно брать в руки целый пучок. Причем, даже если изоляция одного из проводов повреждена и земли не касаться, током бить не будет. Может ударить током только если повреждена изоляция нескольких проводов.

В фильме «Танго и Кэш» герои передвигались по проводу при побеге из тюрьмы. Провод, скорее всего, был в изоляции.

Тут много нюансов — какой ток( постоянный или переменный) идет по проводам, какое напряжение сети, с глухозаземленной нейтралью сеть или с изолированной. В какую обувь (на какой подошве) обут человек. Теоретически да, может не ударить если напряжеие сети низкое. Но я практик и видел столько случаев когда ударяло там где ударить не должно было — так что лучше не рисковать.

Да, такое вполне реально. Если человек не касается земли ногами или же стоит на чем-то, что не проводит ток, то его может и не ударить током. Пример с птицами удачен, голуби и прочие под проводами не валяются.

Но нюансов может быть много. Ведь человек может не касаться земли, а коснуться чего-то иного. И тогда заряд пройдет через его тело и выйдет.

На практике никому не следует повторять такие эксперименты, поскольку они могут плачевно закончиться. Однако теоретически, если говорить о птицах, сидящих на проводах, то получается, что аналогично человек, держащийся лишь за провода, повиснув на них, не касаясь земли и иных поверхностей, не будет пробит током.

Есть ли нюансы при использовании индикаторной отвертки? Разновидности и модели

То в школе, то дома дети от родителей постоянно слышат, что по проводам бежит ток. И не стоит ничего совать в розетку, а то ударит. Но ток ведь не видать? А может его и нет? Однако способ узнать это имеется. И даже без риска для собственного здоровья. Есть уникальный инструмент, который предназначен как раз, чтобы вставлять в розетку. Называется он — отвёртка — индикатор или говоря простым языком тестер. Стоит ли так рисковать? Может опасения не напрасны и ток может ударить? Не беспокойтесь – Вам ничего не грозит. Все заключается в особом строении данного прибора.

Как устроен индикатор

Как же устроена эта специальная отвёртка? С первого взгляда она выглядит как обычная отвертку, но основное отличие заключено внутри. Внешне данный прибор выглядит, как и все остальные – это корпус самой отвертки из материала, не пропускающего электричество и жало. В принципе ей можно тоже закручивать саморезы и винты, но так как это не основная её функция, то лучше ей и не пользоваться. Жало отвертки – именно оно и несёт на себе основной функционал. Его мы вставляем в розетку, ну или дотрагиваться до провода и не бояться удара током. Резистор. Эта деталь имеет высокое сопротивление.

Благодаря именно ему, Вас и не ударит электричество. Неоновая лампа (обычная светодиодная лампочка) – это и есть тот самый индикатор, который светится, если ток в цепи имеется. Пружина – да просто позволяет улучшить контакт с контактной пластиной. Контактная пластина – она контактирует с проводящим ток объектом. Это же логично! В данном случае с Вами. Поэтому в схему работы цепи следует добавить еще и Вас. Вот и полное строение индикаторной отвёртки.

Исходя из этого принцип работы получается весьма простым. Ток проходит по жалу, которое вставлено в розетку или приставлено к проводу. Далее он встречается с резистором, которым уменьшает силу тока в разы и предотвращает удар им человека. Ну, и в конце концов зажигается неоновая лампочка, которая и сигнализирует о наличии тока.

Индикаторные отвертки разновидности

Все индикаторные отвертки можно разделить на три вида.

Классическая индикаторная отвертка. Это наиболее практичный и долговечный прибор. Он может годами валяться в ящике с инструментами и не требовать к себе внимания. Но в любое время он может помочь Вам во время проверки электрических цепей. Он недорогой. Ведь даже вся его конструкция говорит о том, что он настолько простой, что дороговизне неоткуда просто взяться. Пользоваться им – проще простого. Воткнули жало в розетку, прижали палец к пластине и получили результат. Что тут может быть проще?

Но все её преимущества превращаются и в недостатки. Она имеет высокий порог чувствительности. Она сработает только при наличии 60 и более вольт в сети. Ну и естественно ей необходим контактный метод для работы.

Индикаторная отвертка на батарейках со светодиодом. Она внешне ничем не отличается от классической, только внутри имеет светодиод и биполярный транзистор. В этой отвертке уже не требуется касаться контактной пластины при измерении. Можно выделить и другие положительные моменты. Для определения наличия тока в проводнике, достаточно поднести оборотную сторону к проводу, чтобы увидеть результат. Такого рода отвертки имеют более широкий функционал. С ней можно проверить кусок провода на разрывы. Можно просто приложить один кусок к жалу отвертки, а второй к контактной пластине. Можно протестировать и цоколь лампы. Просто дотроньтесь щупом до него. Можно узнать и о попадании тока на корпус устройства. Просто дотроньтесь до него рабочей поверхностью. В любых подобных случаях индикатор Вам будет весело подмигивать.

Ей можно проверять даже напряжение менее шестидесяти вольт.

Такая отвертка, как ни странно имеет тоже минусы. К отрицательным моментам следует отнести:

Завышенная чувствительность. Это, как оказывается не только плюс, но и минус. Индикатор может сработать даже если в цепи нет тока. Поэтому убедитесь, что рядом нет ничего, что может сказаться на замерах. Минус и то, что есть зависимость от батарейки, которую, как ни странно иногда приходится менять.

Читать еще:  Легранд розетки установочные размеры

Универсальные тестеры. Внутри таких приборов уже кроется микросхема, которая существенно расширяет возможности. Переключение режимов работы осуществляется ползунком на корпусе отвёртки. Таких режимов насчитывается целых три.

  • Определение напряжения при контактном тестировании. При этом загорается лампочка.
  • Тестирование бесконтактное с низкой чувствительностью. Тоже загорается зелёный индикатор.
  • Бесконтактное тестирование с высокой чувствительностью.

Получается, что такой индикатор весьма удобен, в отличие от остальных. Но и он имеет свои минусы. А именно достаточно высокая цена и частая замена батареек.

Модели и их способности

Давайте вместе рассмотрим некоторые модели пробников и их способности.

Индикатор safeline – относится к многофункциональным приборам, в одном устройстве объединены пять функций. Ей можно определить фазу, найти скрытую проводку (пользуемся бесконтактным способом обнаружения тока), найти повреждение в кабеле, можно проверить цела ли цепь и само собой проверить полярность элементов питания.

Отвертка индикаторная stayer – относится к типу универсальных тестеров. Она пригодится для тестирования наличия постоянного и переменного тока в автотранспорте, бытовых приборах и многих других. Она проводит прозвонку не только световой, но и звуковой индикацией.

Ms 18 – это классический индикатор с пятью функциями.

6885 48ns – это звуковой тестер фирмы Ресанта. Относится к самым простым и наиболее распространённым устройствам для контактного и бесконтактного определения наличия напряжения в сети.

Индикаторная отвертка iek. Несмотря на то, что данный экземпляр собран в Китае, он достаточно хорошо себя зарекомендовал. Его качество и эффективность на достаточно высоком уровне.

Отвёртка имеет переключатель режимов работы, которых насчитывается три вида. Оснащена двумя светодиодами для сигнализации. Красного и зелёного цвета. Контактная пластина расположена на боку корпуса. Защитный колпачок закрывает жало инструмента. Оснащено динамиком для звуковой индикации. Кроме того, есть фиксатор для транспортировки.

В последнее время на рынке появились индикаторные отвёртки с ЖК дисплеями. Они не только сигнализируют светом или звуком, но и показывают величину напряжения. Боковая кнопка прибора позволяет переключать режимы.

На примере данных моделей мы рассмотрели, как работает индикаторная отвертка.

Принцип работы индикаторной отвертки

Настало время поговорить о принципах работы и о том, как пользоваться индикаторной отверткой.

По сути о принципах работы индикаторной отвёртки мы уже говорили, но как известно повторение мать учения. Коротко изложим вся суть. Индикаторные отвёртки, к какому бы типу они ни относились служат для обнаружения наличия тока в сети. Как дополнительный функционал имеется возможность проверки фазы, обрыва провода, обнаружение скрытых проводок и полярность батареек.

Как правильно пользоваться индикаторной отверткой

Если Вы не профессиональный электрик и совершенно не знаете, как пользоваться индикаторной отвёрткой, то успокойтесь, так как в этом нет ничего сложного, особенно если к Вам попал в руки электронный индикатор. В большинстве случаев, всё, что от Вас требуется это дотронуться жалом инструмента до нужного участка цепи, ну или вставить отвертку в розетку. Дальнейшее индикатор берет на себя.

Определяем утечку

Определение утечки тока на определённом участке цепи или пробоя одна из распространённых причин, когда может понадобится отвёртка индикатор. С подобной проблемой успешно справляется и классическая версия, и электронная. Для этого подносим жало к усику заземления розетки. Лампочка прибора загорелась – значит соответственно имеется утечка. А дальше срабатывает метод исключения. Выключаете все приборы в данной сети. Потом по одному подключаете приборы и проверяете. Если светодиод не загорается – значит прибор исправен. Ну, а если уж загорелась – то Вы нашли проблемный фактор.

Как найти повреждение провода

Чтобы обнаружить повреждение провода имеется два способа. Конечно тестер не сможет точно указать место обрыва, но он позволит локализовать его. Если все электрические провода у Вас скрыты, то пользуясь планом разводки в вашем доме проведите тестер по всей длине проводки от распределителя к розетке. В том месте где есть повреждение индикатор перестанет гореть. Конечно в случае открытой проводки, то все гораздо проще. Есть и второй вариант, он не позволяет узнать где именно произошел обрыв, то даёт знать, что он действительно имеет место. Отключите электроэнергию. Один конец провода возьмите в руку, к другому дотроньтесь жалом отвёртки. Вы образуете единую цепь. Если повреждение внутри неё имеется, то светодиод индикатора не загорится.

Как определить фазу и ноль индикаторной отверткой

Самый распространённый случай для чего нужна индикаторная отвёртка в доме – это определение фазы, особенно если провода не промаркированы цветом. Тут все очень просто. Дотрагиваетесь жалом отвёртки до любой из жил. Если лампочка индикатора загорелась, то эта фаза, а если нет, то Вы нашли ноль. Главное не забывайте. Если Вы используете обычный пробник, то необходимо во время тестирования прикасаться к контактной пластине.

Проверить удлинитель

При проверке переноски всё обстоит несколько сложнее. Для начала нужно отключить его от питания. Далее закорачиваем цепь. Делаем перемычку из провода и ставим её между гнездами любой из розеток. Дальше проще. Берем один из концов вилки, а ко второму прикасаемся жалом. Если горит индикатор, то все нормально, а уж если не г – стало быть переноска не работает.

Ищем скрытую проводку

Электронной индикаторной отвёрткой можно найти и скрытую проводку. Однако следует учитывать, что она не дает высокой точности в определении. Погрешность составляет примерно 15-20 сантиметров. Но даже это показывает безопасную зону для работы. Кроме того, отвертка не позволит обнаружить экранированный и обесточенный провод.

Как проверить индикаторную отвертку

Индикаторная отвёртка служит для работы с электричеством. Думается, что не следует говорить, о важности постоянного слежения за ее состоянием. Корпус отвертки не должен иметь каких-либо повреждений. Проверьте работу прикоснувшись к источнику, где точно есть напряжение. Если на корпусе имеются повреждения, то не жалейте денег и замените тестер. Если устройство с батарейками, то своевременно меняйте их. Главное не путайте их полярность при замене.

Удары электричеством. Мифы и факты.

Электричество и электрические явления являются одной из областей физики, которая до сих пор не в полной мере изучена и понятна, не только для людей далеких от науки, но и даже для специалистов, имеющих дипломы всех цветов и рангов. Поэтому нередко в бытовой жизни или на производстве можно услышать распространенные мифы об электричестве, которые только подтверждают сказанное выше.
Так как в повседневной жизни с постоянным током мы встречаем редко, и то крайне слабой силы, то будем говорить именно о токе переменном.
4 фото видео

Миф №1 — электричество притягивает
Популярный миф среди домохозяек и даже среди некоторых дипломированных инженеров и работников производств. Якобы, если прикоснуться к оголенным проводам или неисправным приборам под напряжением, то электрический ток непременно вас притянет и убьет. Если насчет вероятности «убьет» сомнений особых нет, то вот насчет «притянет» можно с уверенностью сказать, что это лишь миф. Электричество не притягивает!

Данное заблуждение сложилось по причине особенности функционирования мышц тела человека и животных, которые управляются электрическими импульсами нервной системы. Под действием электричества мышцы сокращаются, и если, к примеру, вы схватились руками за оголенные провода, то самостоятельно разжать ладони уже вряд ли удастся. Ваши мышцы не будут подчиняться электроимпульсам мозга, так как на них воздействует более сильный источник. Такая «беспомощность» внешне дает ложное впечатление о том, будто электричество притянуло человека.

Читать еще:  Монтаж розетки шнайдер глосса

Разумеется, проверять находится ли под током провод, нужно только с помощью специальных приборов, индикаторов и вольтметров. Но, если их нет под рукой и, по какой-либо немыслимой причине, вы все же вы решили проверить провод касанием, то действуйте тыльной стороной ладони, в таком случае сокращения мышц руки не помешают вам мгновенно удалиться от источника тока и вы не получите существенных повреждений.

Ну как не странно, то притягивает. Один из способов проявления магнетизма.
Правда, человека не притянет. Ну такого «мифа» я не разу и не слышал. Всегда имелось в виду сокращение мышц.

ТС, после такого «мифа», попробуй «замкнуть» на себя 12 В (5А), а потом 220В (5А), и напиши ощущения. Если сможешь. Да, убивает ток, но его вызывает приложенное напряжение. Вероятность сдохнуть больше при большем напряжении и прочих равных условиях.

Если выжил после предыдущего эксперимента, то продолжи с ванной. Дистиллиро́ванная вода́ — да, плохо проводит, является диэлектриком. У нас из кранов течет «другая» вода, в которых полно карбонатов и других примесей, которые хорошо проводят «амперы». А теперь, «ток течет по наименьшему сопротивлению», и таким сопротивлением стал ты, смоченный хорошим проводником.

ЗЫ Это так, вкратце.

ето ты диванный электрик)

«ток течет по наименьшему сопротивлению»

он течет от провода- к земле.. но не фига не через человека.

п.с. залезу в ванну.. и зусуну в воду провод под напряжением запитанный от разетки. 2 провода. 3 провода. Наспор. за ящик водяры)

п.с.с. нахаляву засуну провод под напругой в ванну с вами. )))

да кто видео то поверит ! я бы сказал- » пиздеш «

п.с. ящик коньяка можно употребить после )

Миф №2 — чем больше напряжение (кол-во Вольт), тем больше вероятность, что вас убьет от удара током. Это заблуждение является более распространенным, чем первое. И не только среди домохозяек, но даже среди инженеров-электриков.
Да, при определенных условиях, убить могут и 220 вольт от домашней розетки, а вот 90 000 вольт от электрошокера «каракурт» почему-то не убивают, хотя неплохо укладывают на пол. Что же тогда получается, высокое напряжение здесь вовсе не причем? Так что же тогда убивает человека?

Как показывает практика, убивает именно сила тока, а не напряжение. Для начала давайте разберем стандартную схему заземления через тело человека, или, как мы любим это называть, «удар током». Вот она, родимая. Прошу заметить, что данная картинка является лишь схематической иллюстрацией того, как происходит заземление через тело человека.

И так, перед нами три линии (трехфазный переменный ток) и человек, демонстрирующий случаи трех вероятных сценариев развития событий. Одно из главных правил, которое следует запомнить — электричество всегда ищет самый короткий путь, чтобы уйти в землю.

Сценарий А — на данном примере, можно с уверенностью сказать, что испытуемого ждет удар током, так как человек заземлил одну из фаз через свое тело. Электричество прошло через руку, тело, ноги и добралось до «земли».
Сценарий Б — удара током не будет. Ведь человека от «земли» отделяет изолятор, определенной высоты (Т), значит, эта схема безопасна.
Сценарий В — плевать, что человек стоите на изоляторе, его ждет удар током, так как он соединил две фазы (Ф1 и Ф2) через свое тело.

Делаем вывод, что главная задача, для того, кто хочет избежать удара током, это не при каких условиях не оказаться на пути электричества к земле. При всех других вариантах событий благоприятный исход не гарантирован.

Тут следует добавить одну поправку про напряжение. Не зря я упомянул высоту Т (толщину) изолятора. Если напряжение будет сравнительно большим, то и толщина изолятора должна быть больше, чтобы не произошло заземление. Так как, высокое напряжение позволяет электрическому току совершать «пробои» — иными словами, проходить через те материалы, через которые обычно он этого сделать не может. через воздух, изолятор и так далее. К примеру, при напряжении в 100 000 Вольт, 1 см трансформаторного масла (изолятора и диэлектрика) пробивается вполне свободно.
То есть, в этом плане напряжение опасно тем, что поведение электричества становиться более динамичным, пробиваются резиновые перчатки, которые ранее при 220 вольт служили вам отличным изолятором. Пробивается расстояние через воздух, пробивается ваша резиновая подошва на обуви и так далее.
А теперь, когда даже детям понятно, что такое заземление через тело человека, думаю, самое время приступить к пояснению — почему все таки не напряжение виновно в смертельности удара, а именно, сила тока или нагрузка в цепи.
По своей природе, удельное сопротивление человеческого тела довольно высоко, в следствии чего, при пропускании электрического тока через его ткани, они разогреваются, сгорают, в общем нарушается их работа. Также, при пропускании электрического тока через тело человека, нарушается работа периферической нервной системы отвечающей за дыхание, сердцебиение и прочие жизненноважные функции организма, что и становится причиной смерти.
Высокая сила тока способна точно также нагревать и сжигать не только органическую ткань, но и проводку. А сила тока зависит от мощности электроприборов включенных в цепь (сеть) и рассчитывается по формуле Р = U*I (где P — мощность (ватт), U — напряжение (вольт), I — сила тока (ампер)). К примеру, если ваш чайник 3500 ватт подключен в цепь питанием 220 вольт, он вызовет прирост силы тока в цепи 3500/220 = 15.9 Ампер. Это такая нагрузка на цепь. Ну, а если вы к этому еще и подключили все свои электроприборы в один сокет (розетку), то за ней сила тока будет суммироваться от каждого электроприбора.
Стандартная схема подключения в любом офисе и удивленное лицо местных обитателей, вопрошающее — почему это сетевики не выдерживают?! Китайские наверное!
К слову, это самая распространенная причина пожаров, особенно в тех квартирах, где замена проводки не проводилась с советских времен. А ведь сегодня электроприборов куда больше, и они куда мощнее. Но, как правило, люди решают такие проблемы заменой автоматов предохранителей на более мощные (с большим ампиражом), а вот проводку оставляют такой же хиленькой. Пожар у таких хозяев лишь вопрос времени.
Подведем итог — подобно тому, как сила тока палит проводку, она также сжигает и ткани человека. А вероятность смертельного исхода прямопропорциональна силе тока в цепи.

Чем отличается изолятор от диэлектрика?

Дык ампераж напрямую от нагрузки и зависит . А при сварке за дугу можно взяться , если не верится . Сварчник до 600 А , не значит , что он через тело эти 600 А прогонит , хотя можно встать в заземленный тазик с водой , голыми ногами и проверить . Убивает не потенциально возможный ток , а ток проходящий через тело

Добавлено в 21:53

Изолятором намеренно изолируют проводники , а диэлектрик -просто ток не проводит

тупая статья для мерикосов.
формулу Р = U*I (где P — мощность (ватт), U — напряжение (вольт), I — сила тока (ампер)) — проходили дети СССР в возрасте 12-13 лет.

По закону Ома сила тока I для участка цепи прямо пропорциональна приложенному напряжению U к участку цепи и обратно пропорциональна сопротивлению R проводника этого участка цепи:

I = frac.
— и это в идеальных условиях. — без мата за полярным кругом она не работает.

Строительный журнал
Добавить комментарий