9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способность материалов проводить электрический ток диэлектрик

Что такое проводники, полупроводники и диэлектрики

  • Что такое проводник
  • Что такое диэлектрик
  • Что такое полупроводник
  • Зонная теория

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Читать еще:  Розетка садовая inscenio 230

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

Что такое диэлектрики и где они используются

Диэлектрики — это вещества, которые не проводят электрический ток, до определенной поры. При определенных условиях проводимость в них зарождается. Этими условиями выступают механические, тепловые — в общем, энергетические виды воздействий. Кроме диэлектриков, вещества также классифицируются на проводники и полупроводники.

Чем отличаются диэлектрики от проводников и полупроводников

Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:

Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.

И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.

В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона — это самая внешняя граница. Точно, это как с мигрантами. Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон. При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.

В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” — запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния. У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) — то это диэлектрик, в обратном случае дЭ

Главными электрическими свойствами диэлектриков являются поляризация (смещение зарядов) и электропроводность (способность проводить электрический ток) Смещение связанных зарядов диэлектрика или их ориентация в электрическом поле называется поляризацией. Это свойство диэлектрических материалов характеризуется относительной диэлектрической проницаемостью ε. При поляризации на поверхности диэлектрика образуются связанные электрические заряды.

В зависимости от типа диэлектрика поляризация может быть: электронной, ионной, дипольно-релаксационной, спонтанной. Более подробно про их свойства на инфографике ниже.

Под электропроводностью понимают способность диэлектрика проводить электрический ток. Ток, протекающий в диэлектрике называется током утечки. Ток утечки состоит из двух составляющих — тока абсорбционного и тока сквозного. Сквозные токи обусловлены наличием свободных зарядов в диэлектрике, абсорбционный ток — поляризационными процессами до момента установления равновесия в системе.

Величина электропроводности зависит от температуры, влажности и количества свободных носителей заряда.

При увеличении температуры электропроводность диэлектриков увеличивается, а сопротивление падает.

Зависимость от влажности вновь возвращает нас к классификации диэлектриков. Ведь, неполярные диэлектрики не смачиваются водой и на изменение влажности им нет дела. А у полярных диэлектриков при увеличении влажности повышается содержание ионов, и электропроводность увеличивается.

Проводимость диэлектрика состоит из поверхностной и объемной проводимостей. Известно понятие удельной объемной проводимости, обозначается буквой сигма σ. А обратная величина называется удельное объемной сопротивление и обозначается буквой ро ρ.

Резкое увеличение проводимости в диэлектрике при возрастании напряжения может привести к электрическому пробою. И аналогично, если сопротивление изоляции падает, значит изоляция не справляется со своей задачей и необходимо применять меры. Сопротивление изоляции состоит из поверхностного и объемного сопротивлений.

Под диэлектрическими потерями в диэлектриках понимают потери тока внутри диэлектрика, которые рассеиваются в виде тепла. Для определения этой величины вводят параметр тангенс дельта tgδ. δ — угол, дополняющий до 90 градусов, угол между током и напряжением в цепи с емкостью.

Диэлектрические потери бывают: резонансные, ионизационные, на электропроводность, релаксационные. Теперь подробнее поговорим про каждый тип.

Электрическая прочность это отношение пробивного напряжения к расстоянию между электродами (или толщина диэлектрика). Эта величина определяется минимальной величиной напряженности электрического поля, при которой произойдет пробой.

Читать еще:  Замена розетки для электрической плиты

Пробой может быть электрическим (ударная ионизация, фотоионизация), тепловым (большие диэлектрические потери, следовательно много тепла, и обугливание с оплавлением может произойти) и электрохимическим (в результате образования подвижных ионов).

И в конце таблица диэлектриков, как же без нее.

В таблице выше приведены данные по электрической прочности, удельному объемному сопротивлению и относительной диэлектрической проницаемостью для различных веществ. Также тангенс угла диэлектрических потерь не обошли стороной.

Электропроводность диэлектриков Электропроводность диэлектриков Электропроводность – способность материала

  • Количество слайдов: 27

Электропроводность диэлектриков» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_0.jpg» alt=»>Электропроводность диэлектриков» /> Электропроводность диэлектриков

Электропроводность диэлектриков Электропроводность – способность материала проводить электрический ток. » src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_1.jpg» alt=»>Электропроводность диэлектриков Электропроводность – способность материала проводить электрический ток. » /> Электропроводность диэлектриков Электропроводность – способность материала проводить электрический ток. Электрический ток – направленное движение заряженных частиц. В диэлектриках возможно присутствие: свободных зарядов; связанных зарядов. Направленное перемещение связанных зарядов называется током смещения (iсм) или абсорбцион-ным током (iаб). Направленное движение свободных зарядов называется сквозным током (iскв).

Наличие абсорбционного тока в диэлектрике обусловлено происходящими в нем поляризационными процессами: либо мгновенно протекающими» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_2.jpg» alt=»>Наличие абсорбционного тока в диэлектрике обусловлено происходящими в нем поляризационными процессами: либо мгновенно протекающими» /> Наличие абсорбционного тока в диэлектрике обусловлено происходящими в нем поляризационными процессами: либо мгновенно протекающими ( ≈10-13÷10-15с), либо замедленно ( релаксационные виды поляризации). iсм=iаб=iмгн+iр При приложении к диэлектрику электрического поля постоянного напряжения абсорбционный ток протекает только в момент приложения и снятия напряжения. При переменном напряжении iаб протекает постоянно.

Ток , протекающий в диэлектрике, называется током утечки (iут). Ток» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_4.jpg» alt=»>Ток , протекающий в диэлектрике, называется током утечки (iут). Ток» /> Ток , протекающий в диэлектрике, называется током утечки (iут). Ток утечки представляет собой сумму сквозного тока и тока абсорбции: iут=iскв+iаб

Электропроводность диэлектриков носит, в основном, ионный характер. Ионы переносят с» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_5.jpg» alt=»>Электропроводность диэлектриков носит, в основном, ионный характер. Ионы переносят с» /> Электропроводность диэлектриков носит, в основном, ионный характер. Ионы переносят с собой часть вещества. Сопротивление изоляции определяется величиной сквозного тока: Ток, измеренный через 1 минуту после приложения к диэлектрику постоянного напряжения, принимается за сквозной ток.

Для твердых диэлектриков различают объемную и поверхностную проводимость. Для количественной оценки способности материала» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_6.jpg» alt=»>Для твердых диэлектриков различают объемную и поверхностную проводимость. Для количественной оценки способности материала» /> Для твердых диэлектриков различают объемную и поверхностную проводимость. Для количественной оценки способности материала проводить электрический ток используются: удельное объемное сопротивление (ρ) или удельная объемная проводимость (γ); R – объемное сопротивление образца, Ом; S – площадь электрода, м2; h – площадь образца, м.

В процессе эксплуатации диэлектрика сквозной ток через него либо увеличивается, либо уменьшается. » src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_9.jpg» alt=»>В процессе эксплуатации диэлектрика сквозной ток через него либо увеличивается, либо уменьшается. » /> В процессе эксплуатации диэлектрика сквозной ток через него либо увеличивается, либо уменьшается. Увеличение сквозного тока говорит об участии в электропроводности зарядов, являющихся структур-ными элементами самого материала, т. е. об изменении химического состава материала – старении изоляции (необратимом ухудшении изоляционных свойств). Уменьшение сквозного тока говорит об электри-ческой очистке материала за счет удаления примесей (ионы примесей переносят с собой часть вещества) . Электропроводность диэлектриков зависит от : агрегатного состояния вещества; влажности; температуры.

Электропроводность газов Электропроводность газов очень мала при» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_10.jpg» alt=»>Электропроводность газов Электропроводность газов очень мала при» /> Электропроводность газов Электропроводность газов очень мала при небольших значениях напряженности электрического поля. Ток в газах возникает при появлении в них ионов или свободных электронов за счет ионизации молекул. Ионизация молекулы – это распад молекулы на электрон и положительно заряженный ион.

Ионизация нейтральных молекул газа возникает: Под действием внешних факторов: рентгеновские лучи,» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_11.jpg» alt=»>Ионизация нейтральных молекул газа возникает: Под действием внешних факторов: рентгеновские лучи,» /> Ионизация нейтральных молекул газа возникает: Под действием внешних факторов: рентгеновские лучи, ультрафиолетовое излучение, нагрев, радиоактивные излучения и т. п. Вследствие соударения разогнанных электри-ческим полем заряженных частиц с молекулами.

Читать еще:  Розетки трехфазные для скрытого монтажа

Электропроводность газов, обусловленная воздействием внешних факторов, называется несамостоятельной. » src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_12.jpg» alt=»>Электропроводность газов, обусловленная воздействием внешних факторов, называется несамостоятельной. » /> Электропроводность газов, обусловленная воздействием внешних факторов, называется несамостоятельной. В 1 см3 газа при нормальных условиях ежесекундно образуется от 3 до 5 пар заряженных частиц. Часть из них исчезает – рекомбинирует ( положительно заряженный ион и свободный электрон при столкновении образуют нейтральную молекулу). Электропроводность газов, обусловленная ионизацией молекул под действием электрического поля, называется самостоятельной. Самостоятельная электропроводность проявляется только в сильных электрических полях.

Виды ионизации молекул Ударная ионизация – распад молекулы при соударении с» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_13.jpg» alt=»>Виды ионизации молекул Ударная ионизация – распад молекулы при соударении с» /> Виды ионизации молекул Ударная ионизация – распад молекулы при соударении с электроном, если энергия приобретенная им под действием электрического поля достаточна для ионизации молекулы. Фотонная ионизация – ионизация молекулы за счет захвата фотонов. За счет захвата молекулой электрона при их столкновении образуются отрицательные ионы (только для электроотрицательных газов).

Зависимость тока в газах от напряжения» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_14.jpg» alt=»>Зависимость тока в газах от напряжения» /> Зависимость тока в газах от напряжения

Пояснение графика зависимости тока от напряжения I участок кривой ( до» src=»https://present5.com/presentacii/20170503/10-4_elektroprovodnosty_dielektrikov.ppt_images/10-4_elektroprovodnosty_dielektrikov.ppt_15.jpg» alt=»>Пояснение графика зависимости тока от напряжения I участок кривой ( до» /> Пояснение графика зависимости тока от напряжения I участок кривой ( до напряжения насыщения — Uн) выполняется закон Ома – ток пропорционален напряжению; II участок (горизонтальный): при напряжении Uн скорость дрейфа ионов настолько возрастает, что вероятность их рекомбинации уменьшается, и, в основном, все ионы устремляются к электродам. Плотность тока насыщения

10-15 А/м2, достигается ток насыщения в воздухе при h=10 мм и E=0,6 В/м. III участок: при напряжении, большем напряжения ионизации (Uи) возникает ударная ионизация и проявляется самостоятельная электропроводность. Для воздуха Еи=105÷106В/м.

Классификация веществ по способности проводить электрический ток

Ответ или решение 2

Электрическим током называется направленное движение заряженных частиц.

Для появления электрического тока необходимо 2 условия:

  • наличие заряженных частиц;
  • заряженные частицы должны двигаться в одном направлении.

В зависимости от наличия свободных заряженных частиц все вещества разделяются на 3 вида:

  1. проводники;
  2. полупроводники;
  3. диэлектрики.

Проводники

Это вещества, в которых большая концентрация свободных носителей заряда. К ним относятся металлы, электролиты и ионизированный газ.

В металлах свободными носителями заряда являются свободные электроны, в электролитах и ионизированном газе ионы. Положительно заряженные ионы называются катионами, отрицательно заряженные ионы анионы.

Под действием электрического поля электроны в металлах, ионы в электролитах и газе начинают упорядоченно двигаться, образовывая электрический ток. К электролитам относят водные растворы солей и кислот.

У металлов проводимость электронная, в электролитах и ионизированном газе ионная.

Полупроводники

Вещества, концентрация свободных носителей электрического заряда зависит от внешних условий (температуры, освещенности и т.д.).

При повышении температуры (освещенности) у вещества, вследствие теплового движения, некоторые электроны становятся свободными, а их место становится вакантным. Место, которое покинул электрон, называется «дырка», она имеет положительный электрический заряд.

При наличии электрического поля «дырки» и электроны двигаются в противоположенных направлениях, образовывают направленное движения электрических зарядов, то есть электрический ток. У полупроводников электронно-дырочная проводимость электрического тока, которая зависит от внешних факторов.

К полупроводникам относят: германий, кремний, селен.

Диэлектрики

Вещества, в которых свободные носители заряда отсутствуют. Диэлектрики не проводят электрический ток, ни при каких условиях, их еще называют изоляторами. К ним относятся слюда, керамика, стекло, резина.

Вещества по способности проводить электрический ток делятся на 3 группы:

Проводники — вещества, которые хорошо проводят электрический ток.

К ним относятся металлы, растворы солей, кислот, щелочей в воде. Для них характерно наличие свободных заряженных частичек (электронов, ионов), которые под действием электрического поля двигаются.

Полупроводники — вещества, в которых электрическая проводимость зависит от внешних условий. Количество свободных заряженных частиц в них зависит от определенных условий: температуры, освещенности, наличия примесей.

К ним относятся кремний, индий, германий.

Диэлектрики — вещества, которые ни при каких условиях не проводят электрический ток. В них очень маленькая концентрация свободных носителей заряда.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты