5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрический ток в проводниках диэлектриках полупроводниках

Электрический ток в проводниках диэлектриках полупроводниках

§ 6. Деление твердых тел на проводники, полупроводники и диэлектрики

Физические свойства твердых тел, и в первую очередь их электрические свойства, определяются не тем, как образовались зоны, а тем, как они заполнены. С этой точки зрения все кристаллические тела можно разделить на две принципиально различные группы.

Проводники. В первую группу входят тела, в энергетическом спектре которых над целиком заполненными зонами располагается зона, заполненная частично (рис. 10, а). Как мы видели, частичное заполнение зон наблюдается у щелочных металлов, у которых верхняя зона образуется из незаполненных атомных уровней, а также у кристаллов щелочноземельных элементов, верхняя зона которых благодаря перекрытию заполненных и пустых зон является гибридной. Все тела, входящие в первую группу, являются проводниками.


Рис. 10

Полупроводники и диэлектрики. Во вторую группу объединяются тела, у которых над целиком заполненными зонами располагаются совершенно пустые зоны (рис. 10, б, в). В эту группу входят и кристаллы, имеющие структуру алмаза, такие, как кремний, германий, серое олово, собственно алмаз и др. К этой группе относятся и многие химические соединения — окислы металлов, карбиды, нитриды металлов, корунд (Аl2O3) и др. Вторая группа твердых тел объединяет полупроводники и диэлектрики. Самая верхняя заполненная зона в группе этих кристаллов называется валентной зоной, а находящаяся над ней первая пустая зона — зоной проводимости. Самый верхний уровень валентной зоны называется потолком валентной зоны и обозначается (индекс υ происходит от английского слова valency — валентность). Самый нижний уровень зоны проводимости называется дном зоны проводимости и обозначается Wc (индекс с происходит от английского слова conductivity — проводимость).

Принципиальной разницы между полупроводниками и диэлектриками нет. Деление их в пределах второй группы довольно условно и определяется шириной зоны запрещенных энергий Wg, отделяющей целиком заполненную зону от пустой. Тела, имеющие ширину запрещенной зоны эВ, относят в подгруппу полупроводников. Типичными представителями их являются германий кремний арсенид галлия антимонид индия InSb (Wg ≈ 0,2 эВ).

Тела, у которых Wg > 3 эВ, относят к диэлектрикам. Широко известными диэлектриками являются корунд (Wg ≈ 7 эВ), алмаз (Wg > 5 эВ), нитрид бора и др.

Условность деления твердых тел в пределах второй группы на диэлектрики и полупроводники подчеркивается тем, что многие общепризнанные диэлектрики в настоящее время начинают использоваться в технике как полупроводники. Так, уже сегодня в полупроводниковых устройствах применяется карбид кремния с шириной запрещенной зоны около 3 эВ. И даже такой классический представитель группы диэлектриков, как алмаз, в последнее время изучается в плане возможного использования его в полупроводниковой технике.

Степень заполнения зон электронами и проводимость кристаллов. Рассмотрим свойства кристалла с частично заполненной верхней зоной при абсолютном нуле температуры (Т = 0). В этих условиях в отсутствие внешнего электрического поля все электроны займут самые нижние уровни в зоне, располагаясь на них попарно в соответствии с принципом Паули.

Создадим теперь в кристалле внешнее электрическое поле с напряженностью Е. Поле это будет действовать на каждый электрон с силой F = -eE. Приобретение ускорения электроном означает увеличение его энергии, что должно сопровождаться переходом электрона на более высокие уровни. Поскольку в частично заполненной зоне имеется много свободных энергетических уровней, то такие переходы оказываются вполне возможными. А так как энергетическое расстояние между уровнями очень мало, то даже ничтожные электрические поля вызывают переход электронов на более высоко расположенные уровни. Таким образом, в твердых телах с частично заполненной зоной внешнее электрическое поле увеличивает скорость движения электронов в направлении действия силы со стороны этого поля, что и означает появление электрического тока. Именно такие тела мы называем проводниками.

В отличие от проводников тела, характеризующиеся наличием только заполненных или пустых зон, не способны проводить электрический ток. Внешнее поле в таких твердых телах не может создать направленное движение электронов, так как приобретение электроном дополнительной энергии за счет действия поля означало бы переход его на более высокий уровень; между тем уровни валентной зоны все заняты. В пустой же зоне проводимости, хотя и много свободных мест, нет электронов, а практически используемые электрические поля оказываются не способными сообщить электронам такую энергию, чтобы перевести их из валентной зоны в зону проводимости (здесь исключаются из рассмотрения электрические поля, способные вызвать пробой диэлектрика). В силу всех этих причин даже в полупроводниках внешнее поле не может вызвать появление электрического тока. Вот почему при температуре, соответствующей абсолютному нулю, полупроводник в отношении электропроводности ничем не отличается от диэлектрика.

Электробезопасность

группа 2

Проводники, полупроводники, диэлектрики

По способности проводить электрический ток вещества можно разделить на

  • проводники
  • полупроводники
  • диэлектрики

Эта способность обусловлена особенностью строения веществ.

В проводниках присутствуют свободные носители заряда — это часть электронов сравнительно слабо связанных с ядром, которые могут перемещаться с орбиты одного ядра на орбиту другого под воздействием внешнего электрического поля. Такие электроны называются свободными. К проводникам относятся такие вещества, как медь, алюминий.

Диэлектриками называются вещества, основным электрическим свойством которых является их способность поляризоваться в электрическом поле. Строение диэлектриков характеризуется наличием незначительного количества свободных электронов и молекул, вытянутых по форме (полярные диполи). Суть явления поляризации заключается в том, что под воздействием внешнего электрического поля связанные заряды диэлектрика смещаются в направлении действующих на них сил и тем больше, чем выше напряженность поля.
В дипольных диэлектриках воздействие электрического поля вызывает соответствующую ориентацию дипольных молекул в направлении поля. При отсутствии поля диполи расположены беспорядочно вследствие теплового движения. В результате поляризации на поверхности диэлектрика образуются заряды разных знаков. Проводимость диэлектриков обусловлена наличием незначительного числа свободных зарядов. Диэлектрические материалы обладают очень большим электрическим сопротивлением, которое находится в пределах 10 6 . 10 11 Ом*м.

Читать еще:  Розетки которые не плавятся

Диэлектрические материалы классифицируют по:
-агрегатному состоянию:

  • жидкие;
  • газообразные;
  • твердые.

-по способу получения:

  • естественные;
  • синтетические.

-по химическому составу:

  • органические;
  • неорганические.

-по строению молекул:

  • нейтральные;
  • полярные.

К диэлектрикам относятся воздух, азот, элегаз, лаки, слюда , керамика, полэтилен.

Промежуточное положение между проводниками и диэлектриками занимают полупроводники. К полупроводникам относятся элементы IV группы периодической системы элементов Д. И. Менделеева, которые на внешней оболочке имеют четыре валентных электрона. Типичные полупроводники — германий Ge и кремний Si.

Чистые полупроводники обладают удельным сопротивлением в пределах 10 -5 — 10 8 Ом * м. Для снижения высокого удельного сопротивления в чистые полупроводники вводят примеси — проводят легирование, такие полупроводники называются легированными. В качестве легирующих примесей применяют элементы III (бор В) и V (мышьяк As) групп периодической системы элементов Д. И. Менделеева.

Чистые полупроводники кристаллизируются в виде решетки. Каждая валентная связь содержит два электрона, оболочка атома имеет восемь электронов и находится в состоянии равновесия.
Элементы III группы (бор В) имеют на внешней оболочке три электрона. Поэтому хотя атом бора и «встанет» в кристалл, одного электрона не будет хватать. Отсутствие электрона проводит к образованию «дырки» в кристалле, что равносильно появлению положительного заряда. Если к такому полупроводнику приложить напряжение, электроны начнут двигаться к положительному контакту, а «дырки» — в обратном направлении. Двигающиеся «дырки» рассматриваются как положительно заряженные носители и полупроводники называются полупроводниками р-типа, а примеси — акцепторными.
Элементы V группы (мышьяк As) имеют на внешней оболочке пять электронов. Поэтому в кристалле один электрон окажется лишним. Примеси, при добавлении которых к полупроводнику образуются свободные электроны, называются донорными. Проводимость в полупроводнике с донорной примесью осуществляется за счет свободных электронов. Такой проводник называется полупроводником n-типа.

Область на границе двух полупроводников, один из которых имеет дырочную, а другой — электронную проводимость, называют рn — переходом. Её свойства проводить ток при приложении напряжения в определенном направлении используют в работе полупроводниковых приборов (полупроводниковых диодов, биполярных транзисторов).

ПРОВОДНИКИ, ДИЭЛЕКТРИКИ (НЕПРОВОДНИКИ), ПОЛУПРОВОДНИКИ И ЭЛЕКТРИЧЕСКИЙ ТОК

Урок-2. ПРОВОДНИКИ, ДИЭЛЕКТРИКИ (НЕПРОВОДНИКИ), ПОЛУПРОВОДНИКИ И ЭЛЕКТРИЧЕСКИЙ ТОК

ПРОВОДНИКИ, ДИЭЛЕКТРИКИ (НЕПРОВОДНИКИ), ПОЛУПРОВОДНИКИ И ЭЛЕКТРИЧЕСКИЙ ТОК

Цель даного урока: усвоить теоретические сведения, касающиеся такиких понятий как: проводники, диэлектрики, полупроводники и электрический ток. Понять химическую, физическую природу возникновения электрического тока и основные условия для его возникновения. В этом уроке мы коснемся таких важнейших понятий и определений как постоянное и переменное напряжение — ток. В конце данного урока будет более интересное практическое задание, чем в первом уроке. Я думаю что для вас оно не покажется трудным.

Не в каждом теле есть условия для прохождения электрического тока. Дело в том, что атомы и молекулы различных веществ обладают неодинаковыми свойствами. В металлах, например, электроны легко покидают оболочки и беспорядочно, хаотично движутся между атомами. В металлах особенно много свободных электронов. По существу, металл состоит из положительных ионов, расположенных в определенном порядке, пространство между которыми заполнено свободными электронами. В металле невозможно различить, какой электрон к какому из атомов относится, они сливаются в единое электронное «облако». Огромное количество свободных электронов в металлах создает в них наиболее благоприятные условия для электрического тока. Нужно только хаотическое движение электронов упорядочить, заставить их двигаться в одном направлении.

В некоторых телах и веществах почти нет свободных электронов, так как они прочно удерживаются ядрами. У молекул и атомов таких тел трудно «отобрать» или «навязать» им лишние электроны. В таких телах нельзя создавать электрический ток. Тела и вещества, в которых можно создавать электрический ток, называют проводниками. Те же тела и вещества, в которых его создать нельзя, называют диэлектриками или непроводниками тока. К проводникам, кроме металлов, относятся также уголь, растворы солей, кислоты, щелочи, живые организмы и многие другие тела и вещества. Причем в растворах солей электрический ток создается не только электронами, но и положительными ионами. Диэлектриками являются воздух, стекло, парафин, слюда, лаки, фарфор, резина, пластмассы, различные смолы, маслянистые жидкости, сухое дерево, сухая ткань, бумага и другие вещества. Фарфоровыми, например, делают изоляторы для электропроводки, лаки используют для покрытия проводов, чтобы изолировать провода друг от друга и от других предметов.

Но есть еще большая группа веществ, называемых полупроводниками. К полупроводникам, в частности, относятся германий и кремний. По электропроводности они занимают среднее место между проводниками и непроводниками. Считавшиеся когда — то непригодными для практических целей, сейчас они стали основным материалом для производства современных полупроводниковых приборов, например транзисторов, с которыми будет связана большая часть вашего творчества.

Как заставить двигаться упорядоченно, в одном направлении, обилие свободных электронов, скажем, в нити накала электрической лампочки? Нужно создать в проводнике электрическое поле, подключив, например, проводник к гальваническому элементу или батарее гальванических элементов. Устройство простейшего гальванического элемента, являющегося химическим источником тока, показано на рис. Элемент состоит из цинковой и медной пластинок, называемых электродами, которые помещены в электролит — раствор соли или кислоты, например серной.

Устройство простейшего гальванического элемента

В результате химической реакции, происходящей между электродами и электролитом, на цинковом электроде образуется избыток электронов, и он приобретает отрицательный электрический заряд, а на медном, наоборот, недостаток электронов, и он приобретает положительный заряд. При этом между разноименными электрическими зарядами такого источника тока возникает электрическое поле, действует электродвижущая сила (сокращенно ЭДС) или напряжение. О разнице между ЭДС и напряжением я расскажу вам позже, во время экскурсии в электротехнику.

Читать еще:  Розетка постельное белье теп семейное

Вы уже знаете, что полюсы элемента или батареи обозначают знаками «плюс» и «минус». Их вы видели, например, возле жестяных выводных пластинок батареи, предназначенной для питания лампы накаливания карманного электрического фонаря. Между прочим, эта батарея также состоит из гальванических элементов, только не жидкостных, как элемент, показанный на рис., а сухих. Там их три. Несколько элементов, соединенных между собой в единый источник тока, и называют батареей.

Запомни: на схемах отрицательный полюс элемента или батареи принято обозначать короткой линией, положительный — удлиненной линией.

Схематическое обозначени гальванического элемента

Как только проводник окажется подключенным к полюсам элемента или батареи, в нем возникнет электрическое поле, под действием которого электроны, как по мостику, перекинутому через овраг, будут двигаться туда, где их недостаток, от отрицательного полюса через проводник к положительному полюсу источника электрической энергии. Это и есть упорядоченное движение электронов в проводнике электрический ток. Ток течет через проводник потому, что в получившейся цепи (положительный полюс элемента, проводники, отрицательный полюс элемента, электролит) действует электродвижущая сила. Такую простейшую электрическую цепь можно подразделить на два основных участка: внешний и внутренний. К внешнему участку цепи относится все, что подключается к полюсам источника тока, а к внутреннему — та часть цепи, которая заключена внутри самого источника тока.

Запомните: замкнутая электрическая цепь — обязательное условие для существования в ней тока. В разомкнутой цепи ток не течет.

Разноименные заряды можно сообщить двум изолированным телам, например шарикам, подвешенным на шелковых нитях. Шарики будут притягиваться, но тока между ними не будет, так как их разделяет диэлектрик воздух.

Установлено, что электроны в проводнике движутся от отрицательного полюса (где избыток их) к положительному (где недостаток в них), однако и сейчас, как в прошлом веке, принято считать, что ток течет от плюса к минусу, т. е. в направлении, обратном движению электронов. Вы можете спросить: почему бы сейчас не нарушить эту традицию? Дело в том, что это потребовало бы переработки всех учебников, всей технической литературы, имеющей прямое или косвенное отношение к электротехнике и радиотехнике. Условное направление тока, кроме того, положено учеными в основу ряда правил, связанных с определением многих электрических явлений. В то же время такая условность никаких особых неудобств не создает, если твердо помнить, что направление тока в проводниках протичоположно направлению движения электронов. В тех же случаях, когда ток создается положительными электрическими зарядами, например в электролитах химических источников постоянного тока, ток «дырок» в полупроводниках (об этом разговор пойдет в следующих уроках), таких противоречий вообще нет, потому что направление движения положительных зарядов совпадает с направлением тока.

Пока элемент или батарея действуют, во внешнем участке электрической цепи ток течет в одном и том же направлении. Такой ток называют постоянным и обозначают латинской буквой (I).

На выше приведеном рисунке, через соединительные проводники и нить лампы накаливания, электроны движутся слева направо от минуса к плюсу. Но если полюсы элемента поменять местами, тогда электроны в том же внешнем участке цепи потекут справа налево, так как теперь минус окажется на правом конце участка цепи, а плюсна левом. Изменится только направление движения электронов, но ток и в этом случае будет постоянным.

А если полюсы источника тока менять местами очень быстро и к тому же ритмично? В этом случае электроны во внешнем участке цепи тоже будут попеременно изменять направление своего движения. Сначала они потекут в одном направлении, затем, когда полюсы поменяют местами, в другом, обратном предыдущему, потом вновь в прямом, опять в обратном и т.д. Во внешней цепи будет течь уже не постоянный, а как бы переменный ток.

Запомните: в проводах электроосветительной сети течет переменный ток, а не постоянный, как в цепи электрического карманного фонаря. Его вырабатывают машины, называемые генераторами переменного тока. Знаки электрических зарядов на полюсах генератора непрерывно меняются, но не скачком, как в нашем примере, а плавно. Заряд того полюса генератора, который в некоторый момент времени был положительным, начинает убывать и через долю секунды становится отрицательным; отрицательный заряд сначала возрастает, потом начинает убывать, пока снова не окажется положительным, и т.д. Одновременно меняется знак заряда и другого полюса. При этом напряжение и значение тока в электрической цепи также периодически изменяются.

Графически переменный ток изображают волнистой линией — синусоидой, показанной на рисунке. Здесь вертикальная ось со стрелкой, направленной вверх, соответствует одному направлению тока, а вниз — другому направлению тока, обратному первому.

Графическое изображение переменного тока

О чем может рассказать такой график? Ток в цепи появляется в момент времени, обозначенный на графике точкой а. Он плавно увеличивается и течет в одном направлении, достигая наибольшего значения (точка б), и также плавно убывает до нуля (точка в). Исчезнув на мгновение, ток вновь появляется, плавно возрастает и протекает в цепи, но уже в противоположном направлении. Достигнув наибольшего значения (точка г), он снова уменьшается до нуля (точка д). И далее ток, также последовательно возрастая и уменьшаясь, все время меняет , свои направление и значение.

При переменном токе электроны в проводнике как бы колеблются из стороны в сторону. Поэтому переменный ток называют также электрическими колебаниями. Одним полным, или законченным, колебанием тока принято считать упорядоченное движение электронов в проводнике, соответствующее участку графика от а до д или от в до ж. Время, в течение которого происходит одно полное колебание, называют периодом, время половины колебания — полупериодом, а наибольшее значение тока во время каждого полупериода — амплитудой.

Читать еще:  Трехфазная розетка для улицы

Переменный ток выгодно отличается от постоянного тем, что он легко поддается преобразованию. Так, например, при помощи специального устройства — трансформатора — можно повысить напряжение переменного тока или, наоборот, понизить его. Переменный ток, кроме того, можно выпрямить — преобразовать в постоянный ток. Эти свойства переменного тока вы будете широко использовать в своей радиолюбительской практике.

Все то, о чем я рассказал вам сейчас, знает каждый старшеклассник и разумеется, каждый радиолюбитель. Вы пользуетесь благами электричества, иногда даже расточительно, не задумываясь над тем, что ученые всего — навсего каких — нибудь лет 100 назад только — только нащупали пути практического использования этого щедрого дара природы.

В этом уроке вы познакомились с такими важнейшими понятиями как: проводники, диэлектрики и полупроводники. Что такое постоянный и переменный электрический ток. Ну и последнее что необходимо четко запомнить и уяснить — основные характеристики переменного тока на представленном графике (синусоида), это период, полупериод, частота и амплитуда.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.003 с) .

Проводники, изоляторы и полупроводники

Любое тело состоит из молекул и атомов. Атом включает в себя отрицательно заряженные электроны и положительно заряженное ядро. Электроны в атоме совершают орбитальные вращения вокруг ядра. В том случае, если сумма отрицательно заряженных электронов равна положительному заряду, то атом считается электрически нейтральным. В таблице Менделеева порядковый номер элемента определяется числом электронов атома с нейтральным зарядом. Электрический заряд электрона равен -1,6*10 -19 Кл. Заряд ядра по абсолютному значению равен заряду электрона, умноженному на число электронов атома с нейтральным зарядом.

Электроны атомов, как правило, расположены на внешних или внутренних орбитах. Те электроны, что расположены на внутренних орбитах, относительно прочно связываются с ядром атома. Валентные электроны, т.е. те, которые находятся на внешних орбитах, могут отрываться от атома и находиться в «свободном» состоянии до тех пор, пока не присоединятся к новому атому. Атом, у которого отсутствует какое-либо количество электронов называется ионом с положительным зарядом. А вот атом, к которому присоединились электроны, называется ионом с отрицательным зарядом.

Процесс формирования ионов называется — ионизацией.
Количество «свободных» ионов или электронов, т.е. частиц, переносящих заряд, в единице объема вещества называют концентрацией носителей заряда.
Электрический ток — это упорядоченное движение положительно и отрицательно заряженных частиц.
Электропроводность — это способность вещества, под действием электрического поля, проводить через себя электрический ток.

Чем выше концентрация носителей заряда в веществе, тем больше его электропроводность. В зависимости от способности проводить электрический ток, вещества разделяют на 3 группы: проводники, полупроводники и диэлектрики.

Проводники электрического тока

Проводникиэто вещества с высокой электропроводностью. Проводников бывает 2 типа: с электронной проводимостью и ионной проводимостью. К электронной проводимости относятся металлы и их сплавы. В металлах электрический ток создается перемещением электронов. Проходящий через такие проводники ток никак не сказывается на материале и не изменяет его химическую составляющую.

Высокий уровень электропроводности металлов обусловлен тем, что в них много «свободных» электронов, находящихся в состоянии беспорядочного движения и заполняющие объём проводника словно газ. При таком активном движении электроны сталкиваются с ионами неподвижной кристаллической решётки, состоящей из атомов вещества. В следствии чего электроны изменяют направление движения, скорость и свою кинетическую энергию.

Если в проводнике 1-го типа есть электрическое поле, то на заряды проводника действуют силы этого поля, упорядочивая их движение. Свободные электроны двигаются не в хаотическом порядке, а в одном направлении противоположно направлению поля (от минусовой клеммы к плюсовой). Данное упорядоченное движение свободных носителей заряда под действием электрического поля является — электрическим током (проводимости).

Проводники 2-го типа представляют собой растворы или расплавы солей, кислот, щелочей и т. п. в которых не завися от прохождения тока наблюдается электролитическая диссоциация.

Электролитическая диссоциацияэто процесс распада нейтральных молекул на отрицательные и положительные ионы.

Положительные ионами выступают водород и ионы металлов. Отрицательные — гидроксильная группа и кислотные остатки.

Данные растворы или расплавы состоящие из ионов, частично или полностью, называются электролитами. Без воздействия внешнее электрическое поля, молекулы и ионы такого проводника будут находиться в состоянии хаотического движения.

При возникновении в таком проводнике электрического поля, движение ионов приобретает направленное упорядоченное движение, т. е. через проводник протекает ток (проводимости). Положительные ионы двигаются по направлению поля, а отрицательные против.

Полупроводники

Полупроводникиэто вещества, электропроводность которых зависит от температуры, освещенности, электрических полей и примесей. К таким материалам относят: кремний, теллур, германий, селен, соединения металлов с серой и окислы металлов. Полупроводники отличаются еще и тем, что кроме электронной проводимости имеют и дырочную электропроводность. Дырочная электропроводность вызывается движением «дырок» из-за влияния электрического поля. «Дырки» — это свободные места в атомах, которые не заняты валентными электронами. Это подобно тому, что положительно заряженные частицы перемещаются так же, как и заряды, равные зарядам электронов. На сегодняшний день, использование полупроводников широко распространено в разных устройствах и приборах, например, в фоторезисторах и полупроводниковых диодах.

Электрические диэлектрики

Диэлектрикиэто те вещества, в которых при нормальных условиях очень малое количество свободных электрически заряженных частниц. В следствии чего они обладают низкой электропроводностью. К диэлектрикам относятся газы, минеральные масла, лаки и твердые материалы (кроме металлов). Однако, если на диэлектрик будет действовать высокая температура или сильное электрическое поле, то начнется расщепление молекул на ионы, которые потеряют вследствие этого воздействия свои изолирующие свойства.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты