7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защиты кабеля постоянного тока

Постоянный ток — будущее энергоснабжения

Энергетическая революция в Германии: использование постоянного тока позволит сэкономить энергию.

Энергетическая революция: многие связывают этот термин с переходом на возобновляемые источники энергии, такие как энергия солнца и ветра. Тем не менее, залог успешного перехода к рациональному энергоснабжению заключается не в выработке электроэнергии, а в сокращении ее потребления. Прежде всего, это касается промышленности.

В Германии 48% чистой мощности потребляется промышленным сектором – около 250 тераватт-час в год. Почти 70% из этого потребляется устройствами с электроприводом. Следовательно, они являются наиболее значительным средством для оптимизации. Таким образом, 10% мощности (около 17 ТВтч в год) могут быть тут же сэкономлены энергосберегающими двигателями.

Так как многие двигатели работают на высоких скоростях, есть возможность проводить последующую оптимизацию путем электронного регулирования скорости. Экономический потенциал составляет около 30 процентов, или 50 ТВт-ч. Но частотные преобразователи для регулирования скорости также потребляют энергию, так как они работают с постоянным током, который генерируется путем преобразования переменного тока. Это приводит к потерям вследствие конверсии и эффекту обратного действия из-за гармонических колебаний, которые делают сеть неустойчивой.

Сеть c постоянным током для устройств с электроприводом

Альтернатива: двигатели могут быть подключены к сети с постоянным током (DC), вместо использования преобразователя переменного тока. Идеально для этой цели подошла бы сеть с постоянным напряжением в 380 вольт, так как напряжение промежуточной цепи постоянного тока обычно составляет от 350 до 400 вольт. Отдельные операции с постоянным или переменным током могут быть также легко реализованы.

  • снижение потерь при преобразовании переменного тока в постоянный ток с помощью центрального преобразователя;
  • устойчивость сети вследствие уменьшения гармонических колебаний;
  • экономия в отношении компонентов и снижение требований к пространству;
  • простое включение возобновляемых и децентрализованных источников энергии, таких как фотоэлектрические установки;
  • восстановление энергии, с помощью применения «энергии торможения» и аккумуляторов для хранения.

Учитывая все это, технология постоянного тока позволяет значительно сэкономить средства, что делает переход на нее более привлекательным.

Исследовательские проекты — двигатель прогресса

Подобные сценарии являются предметом исследовательского проекта «DC Industrie», который продвигается в 6-й программе исследования энергетики Федерального министерства экономики и энергетики Германии; общий бюджет составляет около десяти миллионов евро.

К участию были привлечены 15 партнеров из разных отраслей, такие как Siemens, Bosch Rexroth и Daimler, а также исследовательские организации, такие как Fraunhofer IPA, и еще одиннадцать партнеров из электротехнической отрасли, включая LAPP.

Цель проекта — «создание интеллектуальной открытой сети постоянного напряжения (DC) для высокоэффективных системных решений с электроприводами в промышленной отрасли».

Испытания будут проводиться при помощи системы управления сетью с привлечением различных производителей и потребителей, после чего и будет дан ответ на вопрос о том, можно ли достичь запланированных целей экономии энергии в двузначном процентном диапазоне.

Компания LAPP предоставляет кабели, которые подходят для применения в сетях с постоянным током. «Участвуя в данном проекте, мы хотим добиться наилучшего понимания требований, предъявляемых к кабелям и линиям для постоянного тока», — объясняет Гвидо Эге, руководитель отдела управления продуктами и их разработки в компании LAPP.

Необходимость стандартизации

Тема постоянного тока для низкого напряжения также обсуждается органами стандартизации. В дополнение к этому, Ассоциация Электрических Технологий разработала план стандартизации, содержащий многочисленные рекомендации к действиям:

  • стандарты продукции с устройствами защиты от утечки токов и короткого замыкания;
  • применение гармонизированных стандартов электромагнитной совместимости для оборудования с постоянным напряжением;
  • отдельная установка силовых цепей переменного и постоянного тока;
  • цветовой код для кабелей постоянного тока;
  • спецификация уровней напряжения;
  • инструкции по установке.

Например, до сих пор не было стандартов для штепсельных разъемов. Эксперты по стандартизации должны рассматривать здесь исключительно практические требования. Пользователь должен иметь возможность вытаскивать штекерный разъем из гнезда, когда он находится под нагрузкой, то есть когда устройство работает с ним. С обычными штепсельными разъемами переменного тока все очевидно, но при работе с постоянным током необходимо сделать так, чтобы розетка имела нулевой потенциал при отключении и чтобы световая дуга гасла. В случае переменного тока физика позаботилась об этом; для постоянного тока требуется техническое оборудование.

Кабели для постоянного напряжения

В компании LAPP разработчики уже думают о том, какие требования будут касаться систем подключения и как они могут быть преобразованы в стандарты. В принципе, кабели для переменного напряжения также подходят и для постоянного. Но существующие знания о старении кабелей, особенно в отношении изоляционного материала, могут не полностью соответствовать реальности в случае постоянным напряжением. Лабораторные тесты профессора Франка Бергера в TU Ильменау в сотрудничестве с LAPP показывают, что при постоянном токе электрические поля оказывают совсем другое физико-химическое воздействие на пластикат, изолирующий кабель переменного тока. Это, скорее всего, состарит изоляцию кабеля быстрее, так что разработчики должны будут найти новые решения. Более того, стало очевидно, что при постоянном токе эффективность изоляционного материала также изменяется при воздействии разных температур.

Читать еще:  Как подсоединить провода от подсветки выключателя

Органы стандартизации также обязаны проводить испытания кабелей на прочность без применения напряжения. При постоянном токе, возможно, что эта процедура преуменьшит истинный процесс старения. Сейчас другие тесты должны дать информацию о том, какие факторы, помимо температуры, могут повлиять на свойства оболочки. Например, окружающая среда или механические воздействия. И не менее интересно, каким образом будет выглядеть тестовая установка, которая воспроизводит эти факторы наиболее реалистично.

Первый опыт работы с продуктами

Кабели для применения с постоянным напряжением не являются чем-то новым для LAPP. Компания предлагает множество сложных решений для применения в этой области. Одним из примеров является ассортимент продукции ÖLFLEX® SOLAR, кабели для применения в фотогальванических установках. В качестве другого примера можно еще привести системы зарядки для электрических и гибридных автомобилей от Lapp Systems, такие как LAPP HELIX, спиральные зарядные кабели, которые способны скручиваются — это экономит до 40% веса. Решения для электромобилей относятся к числу наиболее быстрорастущих областей в LAPP.

Компания LAPP также работает над новыми направлениями — производство органических фотогальванических модулей с использованием тонких кабелей, создающих постоянный ток. А также у LAPP есть новый кабель, разработанный специально для применения с постоянным напряжением до 600 вольт – ÖLFLEX® DC 130H. Желтый цвет оболочки и цвета изоляции жил разработаны в соответствии с предварительным вариантом нового стандарта VDE.

Контакты LAPP Россия

ООО «ЛАПП Руссия»

443028, г. Самара

мкрн Крутые Ключи, ул. Мира, 7

Канал LAPP Россия в Telegram @lapprussia

Отзывы и рекомендательные письма

Рекомендательные письма и отзывы о продукции LAPP и работе с компанией ООО «ЛАПП Руссия» от наших клиентов и партнеров.

Способы защиты кабелей от коррозии

способы защиты кабеля от коррозии

В рабочих условиях кабели требуют определенной защиты от коррозии и иного вредного воздействия окружающей среды. Как и со многими электроприборами, в качестве средства электрохимической защиты используют анодные электроды, сделанные из магния. Магниевый сплав замедляет процесс электро-коррозионного разрушения металлов.

Поэтому большое значение имеет защита кабелей от коррозии, которая должна предусматриваться на этапах проектирования, монтажа и эксплуатации линий электроснабжения. В случае открытой площадки проблема решается путем окрашивания брони или оболочки специальными антикоррозионными составами. При подземной прокладке кабеля для его защиты от коррозии приходится принимать специальные меры.

Виды коррозии кабельной продукции

Применяемые способы защиты кабелей от коррозии зависят от того, какому именно типу коррозионного воздействия подвержена линия электропередачи. Это определяется местом ее прокладки, условиями эксплуатации и материалами кабеля.

Коррозия металлической оболочки кабеля

Различают следующие основные виды коррозии:

  1. электрохимическая (почвенная);
  2. электрическая;
  3. межкристаллитная.

Причиной почвенной коррозии металлических оболочек и брони кабелей является воздействие агрессивных веществ, содержащихся в грунте. В почве постоянно присутствуют соли, щелочи, кислоты, которые выступают в качестве электролита. При контакте этих веществ с металлом на его поверхности образуются микроскопические гальванические элементы, в которых в качестве электродов выступают разные по структуре зерна металла или зерна металла и содержащиеся в его составе примеси. Протекание токов между этими электродами обуславливает быструю коррозию. Свинцовая кабельная оболочка быстрее всего разрушается при наличии в почве нитратов, извести и известняка, уксусной кислоты, доменных шлаков и каменноугольной смолы, большой концентрации перегноя. Стальная броня плохо переносит присутствие в грунте серных и сернокислых соединений, а также соединений хлора. Алюминиевые оболочки быстро корродируют во влажной почве, независимо от ее состава.

Электрическая коррозия протекает в результате воздействия на металлическую оболочку или броню кабеля блуждающих токов. Эти токи образуются в результате эксплуатации рельсового транспорта на электрическом ходу. Рельсы выступают в качестве обратных проводов, по которым ток возвращается на тяговую подстанцию. При этом существенная доля тока уходит в землю, образуя блуждающие токи. При наличии в зоне их действия кабеля с металлической оболочкой или броней возникает коррозия. За год блуждающий ток силой 1 А способен разрушать 3 кг алюминия, 9 кг стали, 35 кг свинца. При этом в некоторых случаях сила блуждающих токов может составлять несколько десятков ампер.

Читать еще:  Выключатели с датчиком движения автоматический выключатель света

Межкристаллитная коррозия характерна для свинцовой брони и кабельных оболочек. Она возникает в результате длительного воздействия вибрации. Наибольшей угрозе подвержен кабель, проложенный вблизи железнодорожных и автомобильных магистралей, трамвайных путей, на мостах и т.д. При длительном воздействии вибрационных нагрузок свинцовая оболочка может растрескиваться. Причем трещины проходят, как правило, по границам зерен металла (кристаллитов), вследствие чего между ними начинают протекать коррозионные процессы, которые дополнительно усиливаются образованием окиси свинца.

Меры защиты от почвенной коррозии

Для предотвращения почвенной коррозии, в первую очередь, необходимо правильно выбрать маршрут прокладки кабельной трассы. Он не должен проходить в болотистой местности, в грунтах с повышенным содержанием влаги и извести. Также следует избегать участков с повышенным загрязнением, в том числе районы свалок бытовых и промышленных отходов, стока промышленных вод, мест с насыпными грунтами, включающими шлаки и т.д.

Если прокладку трассы мимо таких мест не удается обеспечить, то рекомендуется использовать кабельную продукцию с защитным пластиковым покрытием оболочки. При расположении в грунтах с повышенным содержанием агрессивных веществ эффективную защиту металлических оболочек кабелей дает прокладка внутри асбестоцементных труб.

Дополнительно может потребоваться использование электрических способов защиты от коррозии.

Меры защиты от электрической коррозии

Для предотвращения этого типа коррозии используются способы электрической защиты кабеля, которые также применяют и для защиты от химической коррозии.

Суть электрической защиты заключается в подаче отрицательного потенциала на металлическую оболочку кабеля, что позволяет прекратить на ее поверхности электролитические процессы.

Электрическую защиту подразделяют на три типа:

  • катодная;
  • протекторная;
  • дренажная.

При катодной защите земля работает как катод. Между оболочкой кабеля и грунтом при помощи специальной катодной станции прикладывается разница потенциалов, что приводит к возникновению постоянного тока. Его протекание от почвы на кабель обеспечивает поляризацию.

Протекторная защита от коррозии не требует использования внешнего источника поляризационного тока. В качестве него используется гальванический элемент, который формируется металлической оболочкой кабеля («катод») и специальным металлическим элементом («анод»). Между ними в среде электролита возникает разница потенциалов. В результате протекания поляризационного тока происходит реакция восстановления металла кабельной оболочки и окисления протектора. Для защиты металлической оболочки кабелей от коррозии в зоне действия блуждающих токов промышленной частоты используются не обычные, а поляризованные протекторы. Их особенностью является подключение к кабельной оболочке через диод.

Электрический дренаж — это способ защиты кабеля от коррозии, предусматривающий отвод блуждающих токов при помощи проводника. Дренажный проводник подключается к металлической оболочке кабеля в центральной части анодной зоны, где накапливается наиболее значительный потенциал по отношению к земле. По этому проводнику блуждающие токи отводятся к минусовой шине подстанции или к рельсам.

Меры защиты от межкристаллитной коррозии

Для прокладки в зонах значительного вибрационного воздействия рекомендуется использовать кабель со свинцовой оболочкой особых марок. Они отличаются наличием в составе оболочки специальных присадок, которые повышают вибрационную стойкость металла. Прокладка кабеля в таких зонах должна осуществляться только цельным куском, поскольку на муфтовых соединениях межкристаллитная коррозия усиливается. Чтобы уменьшить вибрационное воздействие, рекомендуется выполнять прокладку кабеля в специальных коробах, наполненных песком, с использованием резиновых прокладок и других амортизирующих элементов.

Сборка штекерного разъема постоянного тока

Cпециалист

ОПАСНО

Опасность для жизни в результате поражения электрическим током при прикосновении к кабелям постоянного тока

При падении света фотогальванические модули генерируют высокое постоянное напряжение, которое распространяется на кабели постоянного тока. Прикосновение к кабелям постоянного тока приводит к смертельному исходу или тяжелейшим травмам из-за поражения электрическим током.

  1. Не прикасайтесь к открытым токоведущим деталям или кабелям.
  2. Перед проведением работ обесточьте изделие и заблокируйте от повторного включения.
  3. Не разъединяйте штекерные разъемы постоянного тока под нагрузкой.
  4. Во время всех работ на изделии носите необходимые средства индивидуальной защиты.

ПРЕДУПРЕЖДЕНИЕ

Разрушение инвертора в результате воздействия повышенного напряжения

Если напряжение холостого хода фотогальванических модулей превышает максимальное входное напряжение инвертора, то такое повышенное напряжение может привести к разрушению инвертора.

  1. Если напряжение холостого хода фотогальванического модуля превышает максимальное входное напряжение инвертора, фотогальванические ряды к инвертору не подключаются и осуществляется проверка расчета фотогальванической установки.
Читать еще:  Расчетный ток для алюминиевых кабелей

Для подключения к инвертору все фотогальванические модули должны быть оснащены штекерными разъемами постоянного тока из комплекта поставки. Соберите штекерные разъемы постоянного тока, как описано ниже. Порядок действий аналогичен для обоих штекерных разъемов (+ и –). Рисунки, поясняющие порядок действий, приведены в качестве примера только для положительного штекерного разъема. При сборке штекерных разъемов постоянного тока соблюдайте правильную полярность. Штекерные разъемы постоянного тока имеют маркировку «+» и «–».

Отрицательный (A) и положительный (B) штекерные разъемы постоянного тока

Требования к кабелям

Наружный диаметр: от 5,5 до 8 мм

Сечение провода: от 2,5 до 6 мм²

Количество отдельных жил: минимум 7

Номинальное напряжение: минимум 1000 В

Применение кабельных наконечников не разрешается.

Порядок действий

    Зачистите изоляцию кабеля на 12 мм.

Ослабьте зажимную скобу. Для этого вставьте в зажимную скобу отвертку (ширина рабочего конца 3,5 мм) и разожмите зажимную скобу.

Выньте кабель и снова начните с этапа 2.

  • Сдвиньте накидную гайку до резьбы и затяните (момент затяжки 2 Нм).
  • Как защитить кабель в траншее от механических повреждений

    Во время прокладки кабельной линии в траншее необходимо тщательно продумать ее защиту. Ведь через несколько лет кабель может случайно повредиться, вы можете проводить работы с лопатой и зацепить его. Бывает и так, когда работает бульдозер, он снесет на своем пути все. Чтобы этого избежать, нужна защита кабеля от механических повреждений. А как правильно выполнить защиту, мы и расскажем вам в этой статье.

    Защита кабеля от механических повреждений: основные способы

    Изначально стоит вспомнить о том, что мы уже рассказывали, как проложить кабель под землей, там мы подробно рассказывали о правильной защите. Поэтому если вам нужно просто проложить и защитить кабель дома, рекомендуем ориентироваться только на ту статью, эта предназначена для тех случаев, когда прокладывается кабель высокой мощности согласно всех ГОСТов.

    Итак, какие бывают способы защиты проводника в земле:

    1. Специальная лента, на которой указанно, что внизу есть кабель. Ее легко можно будет заметить во время земляных работ.
    2. Существуют специальные плиты из железобетона. Как правило, они изготавливаются на заказ.
    3. Можно выложить защиту из обыкновенных кирпичей.

    Теперь поговорим подробнее о каждом из этих способов.

    Если прокладывается линии электропередач с мощностью 35 кВ и более, то она должна быть размещена на песчаной подушке, а сверху необходимо укрыть плитами. Такое правило вы сможете найти в ПУЭ. На фото это выглядит следующим образом:

    Для прокладки кабелей мощностью в 20 кВ можно использовать кирпичи из обожженной глины. Однако их необходимо правильно размещать между собой, в противном случае от защиты не будет никакого смысла.

    Обратите внимание! Во время укладки в траншее запрещено использовать силикатный и пустотелый кирпич. Они являются не надежными.

    Укладка кирпича в траншее несет только один смысл – нужно обозначить линии электропередач. Они сильно не защитят, но заметить их будет не сложно. Да и если кто-то вздумает сделать ямку лопатой, он не сможет пробраться сквозь них.

    Рассмотрим схему укладки кирпича в траншее. В таблице вы сможете найти: тип, ширину, количество кирпича и схему, которая позволит вам не допустить ошибку.

    А вот так выглядит схема размещения плит для защиты кабеля от механических повреждений.

    Последний способ защиты – это сигнальная пластиковая лента, которая предназначается для линий электропередач до 20 кВ.

    Укладывается защита такого типа на высоте 250 мм от наружной оболочки проводника. Однако она должна выступать над ним не менее 50 мм по бокам. Такую ленту нельзя размещать в местах, где пересекаются кабельные трассы и проходы.

    Вот мы с вами и рассмотрели, как сделать защиту кабеля от механических повреждений. Помните о том, что для домашнего использования такая статья является не актуальной, здесь описывается способы защиты кабеля большой мощности.

    Также рекомендуем посмотреть видео о современной защите кабеля в траншее.

    Также читайте: как спрятать провода.

    0 0 голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты