Сечение кабеля номинальным током 1000 а
Какие бывают сечения проводов и кабелей?
Стандартный ряд сечений
Существует стандартный ряд сечений жил, выпускаемый заводами изготовителями кабельной продукции: 0,5; 0,75; 1; 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 625; 800; 1000; 1200; 1600 кв. мм. При этом максимальное сечение токопроводящей жилы может достигать 6000 мм.кв. (кабель КСВДСП-6000).
Важно отметить, что минимальная величина для алюминиевого кабеля составляет 2,5 мм 2 . Это связано с низкой прочностью данного металла, так как количество изгибов до момента преломления у него значительно меньше чем у меди, то есть он легко может сломаться в местах присоединения, во время монтажа.
Полезно знать
Для частных домов и квартир, где применяется линейное напряжение 0,4 кВ и соответственно фазное 220 В чаще всего применяется провод сечением от самого минимального значения: 2,5 — алюминий и 1,5 мм.кв. медь. В основном такие стандартные токоведущие жилы подходят для цепей освещения.
Все остальные сечения и соответственно их диаметры зависят от мощности и, естественно, тока в цепях бытового электрооборудования. Для определения сечения, необходимого для монтажа электропроводки ниже приведена таблица. По ней, зная суммарную мощность электрических приборов, подключаемых к данной сети, с легкостью можно найти нужный размер жил.
При этом рекомендуется все же выбирать сечение немного с запасом, то есть ближайшее большее стандартное значение. Например, напряжение в сети однофазное 220 Вольт и у владельца помещения есть необходимость запитать приборы мощностью, допустим, 7 кВт. Согласно таблице нет такой мощности, а есть 5,9 и 8,3 кВт. Для медной проводки понадобится кабель с сечением жилы 4 мм 2 . Если бюджет ограничен и стоит задача выполнить проводку из алюминия, то ближайший больший указный в таблице параметр будет 7,9 кВт, что соответствует жиле 6 мм 2 .
Также можно комбинировать провода разного сечения, например от вводного автомата до распределительной коробки больше, а потом когда происходит разводка по группам электропотребителей или же по светильникам, то можно проложить провод меньшего размера. Главное, нужно помнить о правилах соединения алюминиевой и медной проводки, в случае появившейся такой необходимости.
На производстве мощности электрооборудования значительно выше чем в быту, да и напряжение в высоковольтных сетях это 6 кВ, 10 кВ, 35 кВ и т.д. Именно поэтому здесь стандартные сечения проводов и кабелей разнообразнее. Эта величина высчитывается с большим запасом, так как основные самые мощные приёмники электроэнергии — это электродвигатели, а они во время запуска могут усиливать ток в питающих их силовых цепях в 5–7 раз выше номинального.
Однако, для питания осветительной аппаратуры и цепей вторичной коммутации, осуществляемых контрольными кабелями, широко применяются всё те же провода 1,5–2,5 мм 2 и их вполне хватает.
Для силовых цепей 6 кВ часто применяется алюминиевая кабельная продукция от 120 мм 2 . Если такого сечения кабеля не хватает, то пускают две линии, подключенные параллельно друг другу, тем самым разделяя нагрузку на каждый из них. В быту такие приёмы нецелесообразны. Встречается для особо мощного оборудования монтаж цепей с четырьмя или даже шестью, параллельно подключенными проводниками.
Бывают случаи, когда и для низковольтных цепей необходимы кабели с довольно большим сечением жил, как, например, в случае организации сварочных работ.
Выбор сечения провода очень важен и индивидуален, поэтому на производстве этим занимаются целые проектировочные бюро или же отдельные компании, в состав которых входят опытные инженеры проектировщики.
Напоследок рекомендуем просмотреть полезное видео по теме:
Надеемся, предоставленные стандартные сечения кабелей и проводов, а также таблицы, с помощью которых можно выбрать подходящий размер жил, помогли вам полностью разобраться с данным вопросом!
Какое напряжение мегаомметра использовать для измерения сопротивления изоляции?
Какое напряжение мегаомметра использовать для измерения сопротивления изоляции?
Электропроводки и силовые кабельные линии
Напряжение мегаомметра при измерении сопротивления изоляции выбирают исходя из величины сечения жил проверяемого кабеля, при этом различают:
- электропроводки — осветительные и розеточные группы, а также линии питающие стационарные электроприемники;
- силовые кабельные линии.
В ПУЭ п. 2.1.1 электропроводки определяются как силовые, осветительные и вторичные цепи напряжением до 1 кВ переменного и постоянного тока выполняемые с применением изолированных установочных проводов всех сечений, а также небронированных силовых кабелей с резиновой или пластмассовой изоляцией в металлической, резиновой или пластмассовой оболочке с сечением фазных жил до 16 мм2. Кабели с сечением жил более 16 мм2 в соответствии с ПУЭ пп. 2.1.1 и 2.3.1 относятся к силовым кабельным линиям, т.е. начиная от 25 мм2 и далее. В соответствии с ПУЭ п. 1.1.18, значения величин, приведенные с предлогами «от» и «до», следует понимать «включительно», а значит кабели с сечением 16 мм2 относятся к электропроводкам.
Каким напряжением производится измерение сопротивления изоляции?
Итак, испытательное напряжение 1 кВ используют для измерения сопротивления изоляции электропроводок, к которым относятся изолированные установочные провода всех сечений и небронированные кабели с резиновой или пластмассовой изоляцией в металлической, резиновой или пластмассовой оболочке с сечением фазных жил до 16 мм2 включительно.
Испытательное напряжение 2,5 кВ используют для проверки сопротивления изоляции силовых кабельных линий до 1 кВ, к которым относятся кабели с сечением фазных жил от 25 мм2 включительно.
Далее будут приведены требования из таблицы 37 приложения 3.1 к ПТЭЭП; они могут быть скорректированы или ужесточены для отдельных элементов электроустановок отраслевыми нормативными документами:
1) Электроизделия и аппараты на номинальное напряжение до 50 — напряжение мегаомметра 100В;
2) Электроизделия и аппараты на номинальное напряжение свыше 50 до 100 — напряжение мегаомметра 250В;
3) Электроизделия и аппараты на номинальное напряжение свыше 100 до 380 — напряжение мегаомметра 500-1000В;
4) Электроизделия и аппараты на номинальное напряжение свыше 380 — напряжение мегаомметра 1000-2500В;
5) Распределительные устройства, щиты и токопроводы — напряжение мегаомметра 1000-2500В;
6) Электропроводки, в том числе осветительные сети — напряжение мегаомметра 1000В;
7) Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п. — напряжение мегаомметра 1000-2500В;
8) Краны и лифты — напряжение мегаомметра 1000В;
9) Стационарные электроплиты — напряжение мегаомметра 1000В;
10) Шинки постоянного тока и шинки напряжения на щитах управления — напряжение мегаомметра 500-1000В;
11) Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500-1000В, присоединенных к главным цепям — напряжение мегаомметра 500-1000В;
12) Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение до 60В — напряжение мегаомметра 100В;
13) Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение свыше 60В — напряжение мегаомметра 500В.
Выбор сечения кабеля
Сечение проводов и кабелей напряжением до 1000 в по условию нагревания определяются в соответствии с главой 1.3 «Правил устройства электроустановок» в зависимости от расчетного значения допустимой длительной токовой нагрузки при нормальных условиях прокладки , определяемого как большая величина из двух соотношений:
1. По условию нагревания длительным расчетным током
Iн.д — допустимый длительный ток кабеля, А
Iдл — длительный расчетный ток, А
Кп — коэффициент условий прокладки кабеля или провода (при нормальных условиях прокладки равен 1)
2. По условию соответствия выбранному аппарату максимальной токовой защиты
Iн.д — допустимый длительный ток кабеля, А
Kз — кратность допустимого длительного тока для провода или кабеля по отношению к номинальному току или току срабатывания защитного аппарата
Iз — номинальный ток или ток срабатывания защитного аппарата, А
Кп — коэффициент условий прокладки кабеля или провода (при нормальных условиях прокладки равен 1)
Значения Кз и Iз определяются из табл. 1 в зависимости от характера сети, типа изоляции проводов и кабелей и условий их прокладки.
Если допустимая длительный ток кабеля, найденный по (4-16) не совпадает с данными таблиц допустимых длительных токов, разрешается применение проводника ближайшего меньшего сечения, но не меньшего, чем это требуется при определении допустимой длительного тока кабеля по (4-15).
Сечения проводов и кабелей для ответвления к двигателю с короткозамкнутым ротором во всех случаях выбираются в соответствии с (4-15), в которых длительный расчетный ток линии равен: для невзрывоопасных помещений — номинальному току двигателя, а для взрывоопасных-125% номинального тока двигателя напряжением до 1000в.
При расчете сечения кабеля необходимо дополнительно рассчитать допустимые токовые нагрузки с учетом способов прокладки кабеля, температуры окружающей среды и пр. Информацию по данной теме можно посмотреть здесь.
Во всех случаях должно быть обеспечено надежное отключение защитными аппаратами однофазного к. з., происшедшего в наиболее отдаленных точках сети. Это условие выполняется, если кратность тока однофазного КЗ в сетях с глухо заземленной нейтралью не менее 3 по отношению к номинальному току плавкой вставки предохранителя и номинальному току расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику (см. табл.2).
Для сетей, защищаемых только от токов КЗ, завышение токов плавких вставок предохранителей и уставок расцепителей автоматов по сравнению с величинами, регламентированными в табл. 1, допускается в необходимых случаях, например для надежной отстройки от токов самозапуска двигателей, при условии, что кратность тока к. з. имеет значение не менее 5 по отношению к номинальному току плавкой вставки предохранителя и не менее 1,5 по отношению к току срабатывания электромагнитного расцепителя автомата.
Сечения проводов и кабелей линии напряжением выше 1000 в по условиям нагревания определяются по длительным расчетным токам согласно (4-15).
Таблица 1 Минимальные кратности допустимых токовых нагрузок на провода и кабели по отношению к номинальным токам, токам трогания или токам уставки защитных аппаратов.
Значение тока защитного аппарата Iз | Кратность допустимых длительных токов Кз | |||
Сети, для которых защита от перегрузки обязательна | Сети, не требующие защиты от перегрузки | |||
Проводники с резиновой и аналогичной по тепловым характеристикам изоляцией | Кабели с бумажной изоляцией | |||
Взрыво- и пожароопасные помещения, жилые, торговые помещения и т.п. | Невзрыво- и непожароопасные производственные помещения промышленных предприятий | |||
Номинальный ток плавкого предохранителя | 1,25 | 1,0 | 1,0 | 0,33 |
Ток уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель | 1,25 | 1,0 | 1,0 | 0,22 |
Номинальный ток расцепителя автоматического выключателя с нерегулируемой обратно зависимой от тока характеристикой (независимо от наличия или отсутствия отсечки) | 1,0 | 1,0 | 1,0 | 1,0 |
Ток трогания расцепителя автоматического выключателя с регулируемой обратно зависимой от тока характеристикой (при наличии на автоматическом выключателе отсечки кратность тока ее не ограничивается) | 1,0 | 1,0 | 0,8 | 0,66 |
Таблица 2 Значения допустимой минимальной кратности тока КЗ по отношению к току коммутационного аппарата
Условия прокладки | Допустимая кратность тока к.з. по отношению: | |||||
к номинальному току плавкого предохранителя | к току уставки автоматического выключателя, имеющего только электромагнитный расцепитель | к номинальному току расцепителя автоматического выключателя с обратно зависимой от тока характеристикой | ||||
Сеть проложена в невзрывоопасном помещении при условии выполнения требований табл. 4 | 3 | 1,1Кр | 3 | |||
Сеть проложена в невзрывоопасном помещении при условии, что требования табл. 4 не выполняются | 5 | 1,5 | — | |||
Сеть проложена во взрывоопасном помещении | 4 | 1,1Кр | 6 |
Обратная связь
Заполните форму ниже, и мы ответим вам по E-mail через 10 минут!
Кабель ПвВГ 1х1000
Номинальное переменное напряжение | 0,66/1 кВ |
Количество жил | 1 жила |
Сечение размер | 1000 мм 2 |
Ваша заявка на кабель ПвВГ 1х1000 успешно отправлена. Представитель компании «Эксперт-Кабель» свяжется с вами в ближайшее время!
Технические характеристики ПвВГ 1*1000
Вес кабеля ПвВГ 1х1000
Теоретический вес 1 километра ПвВГ 1х1000: 6368,68 килограмм
Вес кабеля зависит от ТУ конкретного завода-производителя. Для расчета массы кабеля ПвВГ 1х1000 с барабаном воспользуйтесь нашим калькулятором веса.
Кабели должны быть намотаны на барабаны. Допускается кабели с жилами номинальным сечением до 16 мм 2 включительно сматывать в бухты.
Масса бухты не должна превышать 50 килограмм.
Таблица намотки кабеля на барабан
№ Барабана | 8 | 8а | 8б | 10 | 12 | 12а | 14 | 16а | 17 | 18 | 20 | 22 | |
Длина (м) | — | — | — | — | — | — | 200 | 350 | 350 | 400 | 650 | 750 |
Диаметр кабеля ПвВГ 1х1000
Наружный диаметр кабеля ПвВГ 1х1000: 51,4 миллиметр
Внешний диаметр сечения зависит от ТУ конкретного завода, в конце страницы вы можете ознакомиться с производителями, у которых можно уточнить информацию.
Размеры кабеля учитываются при расчёте и правильном подборе кабеленесущих систем.
Электрические характеристики ПвВГ 1х1000
Токовая нагрузка ПвВГ 1х1000
Длительно-допустимые токовые нагрузки
Мощность ПвВГ 1х1000
Максимальная мощность при прокладке:
Расчет допустимых токовых нагрузок выполняют при следующих расчетных условиях:
- переменный ток;
- температура окружающей среды при прокладке кабелей на воздухе 25 °C, при прокладке в земле – 15 °C;
- глубина прокладки кабелей в земле 0,7 м;
- удельное термическое сопротивление грунта 1,2 км/Вт.
Ток короткого замыкания ПвВГ 1х1000
Допустимый ток односекундного короткого замыкания ПвВГ 1х1000: 138 кА (килоампер)
При продолжительности короткого замыкания, отличающейся от 1 секунды, значение будет равно 0.18*K, где: K=1/√r, r – продолжительность короткого замыкания в секундах.
Максимальная продолжительность короткого замыкания не должна превышать 5 секунд.