Setzenergo.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет длительно допустимого тока для кабеля

Расчет кабеля на допустимые токи нагрузки

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Предельно допустимые токовые нагрузки на кабель зависят отдопустимой температуры нагрева кабеля или провода в процессеэксплуатации, при которой изоляция не подвергается быстрому старению ине снижаются ее механическая прочность и эластичность. За допустимуютемпературу принимают температуру токопроводящей жилы, не превышающуюдопустимой температуры нагрева изоляции (табл. 4-2). Поэтому тепловойрасчет кабелей сводится к определению температуры токопроводящей жилы сучетом потерь в жилах, изоляции, оболочках и броне. При этом учитываюттепловые сопротивления кабеля и окружающей среды, а также колебаниятемпературы окружающей среды за счет сезонных изменений температуры ипосторонних источников тепла.

Для наглядности расчета допустимых нагрузок прибегают к построениюсхемы замещения тепловых сопротивлений и потоков для конкретныхконструкций кабеля и условий прокладки. На рис. 4-7 приведены схемызамещения одножильного кабеля в воздухе, трехжильного кабеля в стальнойтрубе с маслом под давлением для прокладки в земле и трехжильногокабеля с поясной изоляцией в канале блока. Потери в токопроводящей жилена единицу длины кабеля при постоянном токе

и при переменном токе

где Rж — активное сопротивление жилы (переменному току) с учетом поверхностного эффекта и эффекта близости.

Диэлектрические потери в изоляции кабеля

Превышение температуры токопроводящей жилы над температурой окружающей среды в одножильном кабеле, проложенном в воздухе,

Допустимый ток нагрузки одножильного кабеля

где Тдоп — максимально допустимая температура жилы (табл. 4-2); kр — отношение потерь в оболочке к потерям в жиле.

Превышение температуры жилы трехжильного кабеля низкого напряжения над температурой поверхности блока Тбл, проложенного в земле:

Допустимый ток нагрузки этого кабеля

Превышение температуры жил маслонаполненного кабеля высокогодавления в трубопроводе над температурой земли, окружающей трубопровод,

Допустимый ток нагрузки

где kак — отношение потерь в экране к потерям в жиле; kт— отношение потерь в трубопроводе к потерям в трех жилах кабеля.Отношение допустимого тока нагрузки на кабель, проложенный в воздухе, ктоку нагрузки кабеля, проложенного в земле,

откуда допустимый ток нагрузки кабеля при прокладке в воздухе

Разновидностью подземной прокладки является размещение кабелей вбетонных блоках или асбошиферных трубах, находящихся в земле. Приопределении допустимого тока нагрузки в этом случае учитывают нагревкабеля относительно воздуха в блоке и нагрев самого блока относительноокружающего его слоя грунта. Вследствие эксцентричного положения кабеляв канале блока температуры наружной поверхности оболочки кабеля вверхней и нижней частях различны, но разница редко превосходит 1°С

Ток нагрузки кабеля в блоке зависит от формы блока, числа каналов внем и взаимного расположения каналов с размещенными в них кабелями. Прирасположении кабелей в два ряда все кабели в блоке охлаждаютсяодинаково хорошо, а при расположении их в виде квадрата хорошоохлаждаются только кабели, лежащие на периферии. Кроме того, внутренниекабели подогревают наружные, уменьшая их допустимую нагрузку. Бетонныйблок с кабелями имеет большую постоянную времени нагрева, поэтому оннагревается длительное время. При уменьшении нагрузки температуракабеля не будет изменяться (понижаться) пропорционально квадрату тока вжилах, так как нагретый блок будет подогревать кабель. Отношениеразности температур внутренней стенки канала и окружающего блок грунтак среднесуточным тепловым потерям во всех кабелях блока называюттепловой постоянной канала блока:

Тепловую постоянную при коэффициенте нагрузки 50% можно вычислить по формуле

где N — число каналов или труб по высоте блока; М — число наружных каналов блока.

В большинстве случае значение Н для блоков разной формы находится впределах 20-40 град o см/вт; обычно его принимают равным 30 градoсм/вт.При вычислении среднесуточных потерь значение тока нагрузки принимаютравным среднеквадратичному значению суточной нагрузки. Температура блока

При определении пиковой нагрузки кабеля тепловую постоянную умножаютна отношение средних суточных потерь к максимальным потерям, обычноравное для линейных кабелей 0,5-0,65, а для генераторных кабелей0,8-0,9. Ток перегрузки вычисляют по приближенной формуле

где m=I/Iдоп; I — ток в кабеле, а; Iдоп — длительно допустимый ток в кабеле, а.

Установившаяся температура от тока перегрузки Iпер

Установившаяся температура от тока нагрузки

Допустимый ток перегрузки для заданного времени

Зарядный ток трехжильных кабелей с поясной изоляцией

где ил — номинальное линейное напряжение, в.

Увеличений пропускной способности кабелей на напряжение 220 кв ивыше путем увеличения сечения токопроводящих жил возможно только доопределенного предела, а далее — при применении искусственногоохлаждения. Объясняется это тем, что с увеличением сечения жилувеличиваются объем изоляции и соответственно диэлектрические потери вних. Охлаждение кабеля можно осуществлять маслом или водой. Приохлаждении маслом используется канал в жиле кабеля или промежутки междужилами в трубопроводе; обратный поток масла пропускается подополнительной линии, проходящей через теплообменник для охлаждения.При охлаждении водой в непосредственной близости к кабелямпрокладываются трубы, по которым циркулирует вода; при этом происходитуменьшение величины эффективного теплового сопротивления среды,окружающей кабель, и появляется возможность увеличения его нагрузки.

Трансформаторные подстанции высочайшего качества

с нами приходит энергия

develop@websor.ru

Допустимые токовые нагрузки на провода и кабели

Допустимая токовая нагрузка на провод, кабель или шину определяется из соотношения

где I нд — допустимая длительная токовая нагрузка на провод, кабель или шину при нормальных условиях прокладки (см. табл.);
Кп — поправочный коэффициент, учитывающий изменения условий прокладки проводов и кабелей и равный произведению отдельных поправочных коэффициентов:

Поправочные коэффициенты учитывают:
К 1 — фактическую температуру окружающей среды;
К 2 — число проложенных в траншее рабочих кабелей;
К 3 — условия кратковременного или повторно-кратковременного режима работы электроприемников;
К 4 — сечение кабеля и его месторасположение при прокладке в блоке;
К 5 — напряжение кабеля при прокладке в блоке;
К 6 — общую среднесуточную нагрузку кабелей при прокладке в блоке;
K 7 — прокладку кабелей ,в двух параллельных блоках одинаковой конфигурации;
К 8 — прокладку проводов в коробах и лотках;
К 9 — увеличение допустимой нагрузки на кабели до 10 кв при аварийном режиме;
К 10 — расположение шин на изоляторах.
Допустимые длительные токовые нагрузки на провода и кабели приведены в таблицах для условий нагревания при получасовом максимуме токовой нагрузки, который представляет собой наибольшую из средних получасовых токовых нагрузок данного элемента сети.

Поправка на температуру окружающей среды.
Нормальной температурой окружающей среды при прокладке проводов и кабелей на воздухе считается +25°С и при прокладке кабелей в земле или воде +15° С. При фактической температуре воздуха или земли, отличной от указанных выше значений, вводится поправочный коэффициент К 1 , определяемый из табл. 4-32 в зависимости от нормированной температуры проводов, шин или жил кабелей, указанной в табл. 4-33. Этот коэффициент рекомендуется применять только в случаях значительного отклонения температуры от нормальной (районы Крайнего Севера, вечной мерзлоты, тропики и т. п.).
Для голых проводов воздушных линий электропередачи напряжением выше 1000 В поправочный коэффициент на температуру воздуха не применяется.

Таблица 4-32 Поправочный коэффициент К1 на температуры земли и воздуха для токовых нагрузок на кабели, неизолированные и изолированные провода и шины
Расчетная температура среды °СНормированная температура жил °СПоправочный коэффициент при фактической температуре среды °С
-5+5+10+15+20+25+30+35+40+45+50
15
25
25
15
25
15
25
15
25
15
25
80
80
70
65
65
60
60
55
55
50
50
1,14
1,24
1,29
1,18
1,32
1,20
1,36
1,22
1,41
1,25
1,48
1,11
1,20
1,24
1,14
1,27
1,15
1,31
1,17
1,35
1,20
1,41
1,08
1,17
1,20
1,10
1,22
1,12
1,25
1,12
1,29
1,14
1,34
1,04
1,13
1,15
1,05
1,17
1,06
1,20
1,07
1,23
1,07
1,26
1,00
1,09
1,11
1,00
1,12
1,00
1 ,13
1,00
3,15
1,00
1,18
0,96
1,04
1,95
0,95
1,06
0,94
1,07
0,93
1,08
0,93
1,09
0,92
1,00
1,00
0,89
1,00
0,88
1,00
0,86
1,00
0,84
1,00
0,88
0,95
0,94
0,84
0,94
0,82
0,93
0,79
0,91
0,76
0,89
0,83
0,90
0,88
0,77
0,87
0,75
0,85
0,71
0,82
0,66
0,78
0,78
0,85
0,81
0,71
0,79
0,67
0,76
0,61
0,71
0,54
0,63
0,73
0,80
0,74
0,63
0,71
0,57
0,66
0,50
0,58
0,37
0,45
0,68
0,74
0,67
0,55
0,61
0,47
0,54
0,36
0,41

Таблица 4-33 Допустимые температуры нагревания проводов, кабелей и шин
НаименованиеНаибольшая допустимая температура проводов, кабелей и шин при нагревании длительной токовой нагрузкой, °С
Голые провода и шины+70
Провода и кабели с резиновой или пластмассовой (полихлорвиниловой или полиэтиленовой) изоляцией на:
напряжение до 6 кв+65
Кабели с пластмассовой изоляцией на напряжение 10 кв+60
Кабели с бумажной изоляцией, пропитанной маслоканифольной или нестекающей массой на напряжение, кв:
до 3+80
6+65
10+60

Поправка на количество кабелей, проложенных в общей траншее.
При прокладке в общей траншее более одного кабеля вводится поправочный коэффициент К2, определяемый по табл. 4-21. Ненагруженные резервные кабели при этом не учитываются.
Если часть кабелей, проложенных в общей траншее, загружена полностью, а другая часть — только на 50%, то при определении нагрузки, допустимой для полностью загруженных кабелей, принимаются коэффициенты согласно табл. 4-35.
Поправка на повторно-кратковременный и кратковременный режимы работы.
При повторно-кратковременном или кратковременном режиме работы электроприемников вводится поправочный коэффициент, равный:

где ПВ — относительная продолжительность рабочего периода, равная отношению времени tр включения электроприемника к общему времени длительности цикла повторно-кратковременного режима tц:

Коэффициент Кз, учитывающий повторно-кратковременный режим работы электроприемников, вводится для медных проводников сечением не меньше 10 мм2 и алюминиевых сечением не меньше 16 мм2 при условии, что продолжительность рабочего периода не превышает 4 мин, а продолжительность последующей паузы не менее 6 мин.

Поправка для кабелей, проложенных в блоках.
Допустимые длительные токовые нагрузки для прокладываемых в блоках медных трехжильных кабелей сечением 95 мм2 на напряжение 10 кв в зависимости от конфигурации блока и месторасположения кабеля в блоке. Для других условий прокладки медных кабелей в блоке вводятся поправочные коэффициенты: на сечение кабеля — К 4 , на напряжение — К 5 по табл. 4-24, на среднесуточную нагрузку кабелей, проложенных в блоке, — К 6 по табл. 4-25 и на условие прокладки в двух блоках одинаковой конфигурации — К 7 по табл. 4-26.

Поправка на прокладку проводников в коробах и лотках.
При прокладке проводников в коробах, а также лотках пучками допустимые длительные токовые нагрузки принимаются при числе проводов до 4 по табл., как для проводников, проложенных в трубах.
При числе одновременно нагруженных проводников более 4, проложенных в трубах, коробах, а также лотках пучками, нагрузки на проводники должны приниматься для открытой прокладки (в воздухе) с введением поправочного коэффициента K 8 , равного для пяти-шести проводников 0,68, для семи — девяти проводников 0,63 и для 10-12 проводников 0,6.
Токовые нагрузки на провода, проложенные в лотках при однорядной прокладке (не в пучках), следует принимать, как для проводов, проложенных в воздухе.

Поправка для кабелей с бумажной изоляцией, работающих в аварийных условиях.
Для кабелей с бумажной пропитанной изоляцией напряжением до 10 кв включительно, работающих в нормальном длительном режиме с нагрузкой, не превышающей 80% допустимого длительного тока по нагреванию, на время ликвидации аварии (не более 5 суток) допускается в часы максимума (длительностью не более б ч) перегрузка до 130%, что учитывается введением коэффициента К 9 =1,3.

Поправка для шин при их креплении на изоляторах плашмя.
Допустимые токовые нагрузки для шин прямоугольного сечения при вертикальном расположении их на изоляторах приведены в табл. 4-30. При расположении шин на изоляторах плашмя к допустимой нагрузке вводится поправочный коэффициент К 10 , равный для шин с шириной полос до 60 мм 0,95 и для шин с шириной полос более 60 мм 0,92.
Для кабелей, проложенных на воздухе, допустимые длительные токовые нагрузки приняты для расстояний в свету между кабелями при прокладке их внутри и вне зданий и в туннелях не менее 35 мм и при прокладке в каналах не менее 50 мм при любом числе проложенных кабелей. Допустимые длительные токовые нагрузки на одиночные кабели, прокладываемые в земле в трубах без искусственной вентиляции, должны приниматься, как для тех же кабелей, прокладываемых в воздухе.
При смешанной прокладке кабелей допустимые длительные токовые нагрузки принимаются для участка трассы с наихудшими тепловыми условиями, если длина этого участка более 10 м. В указанном случае при большой общей протяженности кабельной трассы рекомендуется применять кабельную вставку большего сечения, чтобы не увеличивать сечение кабеля на всем протяжении.

Теоретические основы электрических кабелей

4-5. Расчет кабеля на допустимые токи нагрузки

Предельно допустимые токовые нагрузки на кабель зависят от допустимой температуры нагрева кабеля или провода в процессе эксплуатации, при которой изоляция не подвергается быстрому старению и не снижаются ее механическая прочность и эластичность. За допустимую температуру принимают температуру токопроводящей жилы, не превышающую допустимой температуры нагрева изоляции (табл. 4-2). Поэтому тепловой расчет кабелей сводится к определению температуры токопроводящей жилы с учетом потерь в жилах, изоляции, оболочках и броне. При этом учитывают тепловые сопротивления кабеля и окружающей среды, а также колебания температуры окружающей среды за счет сезонных изменений температуры и посторонних источников тепла.

Для наглядности расчета допустимых нагрузок прибегают к построению схемы замещения тепловых сопротивлений и потоков для конкретных конструкций кабеля и условий прокладки. На рис. 4-7 приведены схемы замещения одножильного кабеля в воздухе, трехжильного кабеля в стальной трубе с маслом под давлением для прокладки в земле и трехжильного кабеля с поясной изоляцией в канале блока. Потери в токопроводящей жиле на единицу длины кабеля при постоянном токе

и при переменном токе

где Rж — активное сопротивление жилы (переменному току) с учетом поверхностного эффекта и эффекта близости.

Диэлектрические потери в изоляции кабеля

Превышение температуры токопроводящей жилы над температурой окружающей среды в одножильном кабеле, проложенном в воздухе,

Допустимый ток нагрузки одножильного кабеля

где Тдоп — максимально допустимая температура жилы (табл. 4-2); kр — отношение потерь в оболочке к потерям в жиле.

Превышение температуры жилы трехжильного кабеля низкого напряжения над температурой поверхности блока Тбл, проложенного в земле:

Допустимый ток нагрузки этого кабеля

Превышение температуры жил маслонаполненного кабеля высокого давления в трубопроводе над температурой земли, окружающей трубопровод,

Допустимый ток нагрузки

где kак — отношение потерь в экране к потерям в жиле; kт — отношение потерь в трубопроводе к потерям в трех жилах кабеля. Отношение допустимого тока нагрузки на кабель, проложенный в воздухе, к току нагрузки кабеля, проложенного в земле,

откуда допустимый ток нагрузки кабеля при прокладке в воздухе

Разновидностью подземной прокладки является размещение кабелей в бетонных блоках или асбошиферных трубах, находящихся в земле. При определении допустимого тока нагрузки в этом случае учитывают нагрев кабеля относительно воздуха в блоке и нагрев самого блока относительно окружающего его слоя грунта. Вследствие эксцентричного положения кабеля в канале блока температуры наружной поверхности оболочки кабеля в верхней и нижней частях различны, но разница редко превосходит 1°С

Ток нагрузки кабеля в блоке зависит от формы блока, числа каналов в нем и взаимного расположения каналов с размещенными в них кабелями. При расположении кабелей в два ряда все кабели в блоке охлаждаются одинаково хорошо, а при расположении их в виде квадрата хорошо охлаждаются только кабели, лежащие на периферии. Кроме того, внутренние кабели подогревают наружные, уменьшая их допустимую нагрузку. Бетонный блок с кабелями имеет большую постоянную времени нагрева, поэтому он нагревается длительное время. При уменьшении нагрузки температура кабеля не будет изменяться (понижаться) пропорционально квадрату тока в жилах, так как нагретый блок будет подогревать кабель. Отношение разности температур внутренней стенки канала и окружающего блок грунта к среднесуточным тепловым потерям во всех кабелях блока называют тепловой постоянной канала блока:

Тепловую постоянную при коэффициенте нагрузки 50% можно вычислить по формуле

где N — число каналов или труб по высоте блока; М — число наружных каналов блока.

В большинстве случае значение Н для блоков разной формы находится в пределах 20-40 град o см/вт; обычно его принимают равным 30 градoсм/вт. При вычислении среднесуточных потерь значение тока нагрузки принимают равным среднеквадратичному значению суточной нагрузки. Температура блока

При определении пиковой нагрузки кабеля тепловую постоянную умножают на отношение средних суточных потерь к максимальным потерям, обычно равное для линейных кабелей 0,5-0,65, а для генераторных кабелей 0,8-0,9. Ток перегрузки вычисляют по приближенной формуле

где m=I/Iдоп; I — ток в кабеле, а; Iдоп — длительно допустимый ток в кабеле, а.

Установившаяся температура от тока перегрузки Iпер

Установившаяся температура от тока нагрузки

Допустимый ток перегрузки для заданного времени

Зарядный ток трехжильных кабелей с поясной изоляцией

где ил — номинальное линейное напряжение, в.

Увеличений пропускной способности кабелей на напряжение 220 кв и выше путем увеличения сечения токопроводящих жил возможно только до определенного предела, а далее — при применении искусственного охлаждения. Объясняется это тем, что с увеличением сечения жил увеличиваются объем изоляции и соответственно диэлектрические потери в них. Охлаждение кабеля можно осуществлять маслом или водой. При охлаждении маслом используется канал в жиле кабеля или промежутки между жилами в трубопроводе; обратный поток масла пропускается по дополнительной линии, проходящей через теплообменник для охлаждения. При охлаждении водой в непосредственной близости к кабелям прокладываются трубы, по которым циркулирует вода; при этом происходит уменьшение величины эффективного теплового сопротивления среды, окружающей кабель, и появляется возможность увеличения его нагрузки.

В случае, если Вы не нашли информации по интересующей Вас продукции, обращайтесь на форум и Вы непременно получите ответ на поставленный вопрос. Либо воспользуйтесь формой для обращения к администрации портала.

Для справки: Раздел «Справочник» на сайте RusCable.Ru предназначен исключительно для ознакомительных целей. Справочник составлен путём выборки данных из открытых источников, а также благодаря информации, поступающей от заводов-изготовителей кабельной продукции. Раздел постоянно наполняется новыми данными, а также совершенствуется для удобства в использовании.

Список использованной литературы:

Электрические кабели, провода и шнуры.
Справочник. 5-е издание, переработанное и дополненное. Авторы: Н.И.Белоруссов, А.Е.Саакян, А.И.Яковлева. Под редакцией Н.И.Белоруссова.
(М.: Энергоатомиздат, 1987, 1988)

«Кабели оптические. Заводы-изготовители. Общие сведения. Конструкции, оборудование, техническая документация, сертификаты»
Авторы: Ларин Юрий Тимофеевич, Ильин Анатолий Александрович, Нестерко Виктория Александровна
Год издания 2007. Издательство ООО «Престиж».

Справочник «Кабели, провода и шнуры».
Издательство ВНИИКП в семи томах 2002 год.

Кабели, провода и материалы для кабельной индустрии: Технический справочник.
Сост. и редактирование: Кузенев В.Ю., Крехова О.В.
М.: Издательство «Нефть и газ», 1999

Кабельные изделия. Справочник
Автор: Алиев И.И., издание 2-е, 2004

Монтаж и ремонт кабельных линий. Справочник электромонтажника
Под редакцией А.Д. Смирнова, Б.А. Соколова, А.Н. Трифонова
2-е издание, переработанное и дополненное, Москва, Энергоатомиздат, 1990

Калькулятор кабеля

Кабельный калькулятор. Как произвести расчет и подбор сечения кабеля или провода?

Электрический кабель – это основа электросетей, без него невозможно устройство энергопитающей структуры. Если вам необходимо провести новую проводку, или пришло время заменить старую, необходимо знать основы расчета мощности кабеля по сечению. Для чего?

Правильный расчет кабеля питания – основа безопасности. Если диаметр проводника недостаточен, а нагрузка на кабель высока, последствия могут быть весьма плачевные. Под её воздействием металлическая часть нагревается, что ведёт к оплавлению изоляции и короткому замыканию. В такой ситуации может возникнуть пожар. Чтобы избежать подобных последствий, подойдём к выбору электропроводки профессионально.

Формула расчета сечения кабеля, как рассчитать нагрузку?

Для каждого сечения существует допустимая токовая нагрузка. Например: если нам нужен кабель для того, чтобы подключить одну лампочку, нагрузка на провод, или сила тока, проходящего по проводнику, будет равняться мощности потребления данной лампочки. Это может быть 100 Вт, или (если вы используете новейшие светодиодные осветительные приборы) всего 6 Вт. Таким образом, даже на примере освещения, мы видим, что разница в нагрузке может быть ощутимой. Однако от домашней электросети питается не одна лампочка. Как правило, это целый список бытовых приборов. Чтобы рассчитать нагрузку на провод и выяснить необходимое сечение, нужно знать, сколько электроэнергии может потребляться в том случае, когда все они подключены. Итак, чтобы расчитать сечение провода, нам понадобится таблица. Расчет потребляемой мощности электроприборов.

Потребляемая мощность в Вт

Кабельный калькулятор

В ней дана приблизительная мощность каждого бытового прибора. Следует помнить, что это средние цифры, точные можно узнать из спецификации каждой конкретной модели. Таблица, тем не менее, даёт нам некоторое представление о нагрузке, которую испытывает электрокабель, если все приборы включены в сеть. Разумеется, такое в быту, скорее всего, не случится, но мы говорим о расчёте оптимального сечения, поэтому учитываются даже исключительные варианты. Итак, приблизительный расход электроэнергии в час составляет 10900 – 11350 Вт. Принято брать большее значение и дополнительно добавлять некий запас мощности, например на случай непредвиденного подключения электрообогревателя зимой (+2000 Вт). Мы примем за базовую цифру 14 000 Вт.

Чтобы рассчитать силу тока для однофазной сети (220) пользуемся формулой:

Для двухфазной (380):

Где: Р — общая мощность электрических приборов (мы взяли 14000 Вт)

U — напряжение сети (220 V);

cosφ – коэффициент, который для бытовых электрических приборов равен 1.

Смотрите видео о самых распространенных ошибках при выборе и расчете сечения кабеля

Как это делалось раньше?

Зная максимальную нагрузку и силу тока, инженер рассчитывал сечение проводки с помощью таблиц, которые остаются актуальными и на сегодняшний день: они являются точными и основаны на действующих ГОСТах.

ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами.

ПУЭ, Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных.

ПУЭ, Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами.

ГОСТ 16442-80, Таблица 23. Допустимые токовые нагрузки кабелей до 3КВ включ. с медными жилами с изоляцией из полиэтилена и поливинилхлоридного пластиката, А.

Современные методы: калькулятор расчёта кабеля (внизу страницы)

Современные программы расчёта разработаны для того, чтобы максимально упростить задачу. Имея вводные данные, такие как желаемый материал проводника (медь или алюминий) и максимальное потребление электроэнергии (а, следовательно, силу тока), можно узнать требуемое сечение кабеля для сети 220V или 380V.

Программа расчёта кабеля использует формулы, алгоритмы и математические значения, выдавая в окошечке готовый результат, понятный простому обывателю. Учитываются все параметры электросети, такие как:

  • постоянный или переменный ток;
  • материал проводника;
  • максимальная суммарная мощность;
  • напряжение;
  • коэффициент мощности;
  • способ прокладки: воздушная или подземная;
  • длина кабеля.

Вкратце пройдёмся по приведённым терминам

Ток: бывает постоянный и переменный. Постоянный получается в результате химической реакции (батареи, аккумуляторы). В быту и на производстве чаще используется переменный. Он годится для передачи электроэнергии на большие расстояния, дешевле в использовании и практически все электроприборы адаптированы для использования переменного тока.

Напряжение: это величина, характеризующая величину работы тока за отрезок времени (1 сек) на ограниченном участке.

Мощность: величина производимой работы, сопровождается выделением тепловой энергии.

КПД*cos(φ): коэффициент, применяемый в расчётах сечения кабеля и др.

Сечение: площадь проводящей части кабеля на поперечном срезе.

Диаметр: поперечный размер кабеля с учётом изоляции.

Допустимые потери: при передаче тока по кабелю часть его теряется благодаря такому параметру, как сопротивление. Существуют стандарты, характеризующие допустимую величину потерь, превышение которых служит поводом для проверки состояния электросети. Каждому металлу свойственно собственное сопротивление, соответственно допустимые потери, скажем, для медного проводника и алюминиевого, будут разными.

ОНП: одновременно нагруженные проводники.

Материал: металл, из которого выполнены жилы провода.

Далее рассмотрим проводимость

Проводимость представляет собой способность какого-либо объекта проводить электрический ток. Кроме того, проводимостью называют и физическую величину, которая характеризует упомянутую способность. Данная величина также является обратной удельному сопротивлению. Рассчитывается она, как правило, при помощи специальных электроприборов.

Поскольку основной единицей сопротивления является Ом, а рассматривая нами величина обратна ей, то она будет равняться 1 См = 1 Ом -1 , где См – Сименс или S (в международной системе).

Проводимость различных объектов неодинакова. Например, среди металлов, пожалуй, лучшей проводимостью обладают серебро, а также медь. Это связано с особенностью структуры их атомов, которые позволяют электронам свободнее перемещаться.

Расчет сечения кабеля онлайн, калькулятор по диаметру

На сегодняшний день удобным способом подбора кабеля является калькулятор. С его помощью расчет и выбор силового кабеля производится в онлайн режиме.

Калькулятор сечения кабеля по диаметру позволяет выбрать все необходимые параметры, включая напряжение, ток, диаметр, а также многие другие важные детали.

Для того чтобы использовать калькулятор электроэнергии, достаточно воспользоваться интернет поиском. В открытом доступе доступны различные виды данной программы. В зависимости от потребностей, пользователь может выбрать:

  • Калькулятор веса,
  • Обыкновенный математический калькулятор для вычислений,
  • Калькулятор мощности,
  • Калькулятор величин и другие.

Также есть возможность скачать или купить калькулятор.

Расчет кабеля онлайн. Особенности и параметры.

Расчет кабеля при помощи калькулятора позволяет правильно произвести расчет потребляемой мощности и предусмотреть все необходимые детали и подобрать соответствующие параметры, включая следующие:

  • Сечение провода по нагреву и потерям напряжения. Необходимо учитывать максимально возможный нагрев в нормальном и экстренном режимах. Важно помнить и о неравномерном распределении, возникающем вследствие различного нагрева отдельных линий и повышенного сопротивления. Чрезмерный нагрев может повредить как изоляцию, так и соединения, что в итоге может привести к возгоранию. Чтобы сделать правильный выбор, следует воспользоваться специальными таблицами допустимой нагрузки. Таким образом, правильно подобранный по нагреву кабель обеспечит надёжную изоляцию, контакт, а также предотвратит возникновение аварийной ситуации. Здесь требуется учитывать расчётный ток линии, материал, температуру среды и способ прокладки провода.
  • Что касается второго параметра, наряду с нагревом, всегда стоит учитывать относительные линейные потери напряжения. Их можно рассчитать по формуле: . U – это напряжение источника электроэнергии, а Uном — напряжение в точке соединения приемника.
  • Нагрузочная способность провода заданного сечения. Провода различных сечений обладают разной максимально допустимой нагрузкой. Именно поэтому этот параметр особенно важен, когда необходимо сделать выбор и расчёт сечения кабеля. Так, чем больше энергопотребление в помещении, тем большего сечения кабель будет необходим. Сечение жилы любого провода может быть вычислено по диаметру. Обычно величину диаметра умножают на саму себя и на 0,785. Полученную величину также округляют до целого числа. Калькулятор сечения кабеля по диаметру можно произвести онлайн. Что же касается многожильного провода, то сначала необходимо выполнить расчёт сечения одной проволочки, а затем умножить полученное число на их общее количество.
  • Расчёт потерь и максимальных параметров линии. Потери определяются на активном сопротивлении проводов. Проводя расчет необходимого сечения кабеля, всегда необходим запас как самого сечения, так и длины для тока. Потери же рассчитываются по номинальному значению тока. При онлайн расчете сечения кабеля, можно самостоятельно устанавливать процент потерь.

При расчете сечения силового кабеля, важно обращать внимание на такой параметр как максимальная нагрузка на кабель, которую способен выдержать тот или иной провод. Для этого необходимо учитывать ваши требования, а также возможности вашей сети. В случае если в помещении или на линии установлен автомат, обеспечивающий безопасность электропроводки, следует помнить о его максимально допустимых значениях при выборе кабеля. В противном случае может произойти поломка автомата и возгорание. Полезным будет произвести расчет нагрузки кабеля онлайн.

Существуют различные типы кабелей, в числе которых:

  • силовые,
  • контрольные,
  • специализированные и др.

В зависимости от типа, они служат для разнообразных целей. Например, силовой кабель отлично подходит для передачи значительного объема тока, тогда как контрольный обеспечит передачу небольшого. Помимо этого, кабели могут различаться по среде прокладки (земля, воздух) и по виду материала (алюминий, медь и т.п.). Алюминиевые провода обычно обладают меньшим весом, что является их главным преимуществом. Это позволяет успешно использовать такие кабели для прокладки линий электропередач. Кроме того, алюминий в разы дешевле меди и имеет стойкость к коррозии. Что касается медной проводки, она всё же является наиболее предпочтительной и безопасной. Во-первых, такой металл имеет меньшее сопротивление, то есть пропускает больше тока, чем алюминиевый аналог. Во-вторых, медные провода износостойки и служат в течение долгого времени. Во время окисления медь не теряет токопроводящих свойств.

Существует два основных вида сечений – одножильный и многожильный. Кроме того, выделяют круглый и плоский провод.

Сечение круглого типа при расчете кабеля в квартире или другом помещении производится при помощи подсчёта диаметра. Величину диаметра провода умножают на саму себя и на 0,785. Полученную величину часто округляют до целого числа. Калькулятор также часто используется для проведения подобных подсчётов. Многожильный круглый кабель считается по тому же принципу. Сначала необходимо найти диаметр одной жилы, а затем умножить его на общее количество.

Оболочка предотвращает кабели от пагубного воздействия влаги, солнца, механических повреждений и различных веществ.

Среди наиболее популярных материалов для оболочек встречаются:

  • металл (чаще применяется для высоковольтных кабелей и прокладывается в земле),
  • ПВХ пластикат (используется на общепромышленных проводниках, создан для неподвижного подключения и стоек к низким температурам),
  • резина (подходит для проводников при создании подвижного соединения, так как обладает высокой пластичностью).

Таким образом, при выборе и расчете сечения кабеля по мощности и длине, а также другим параметрам, важно учитывать вид оболочки.

Примеры проводов и кабелей

Силовой с ПВХ и изоляцией из резиновой смеси:

  • ВВГ, ВВГнг,
  • ВВГнг-LS, АВВГ,
  • ВВГнг-П,
  • АВВГнг,
  • ВБбШв и другие.
  • ТПпП,
  • ТПпПз,
  • ТПпэПзБбШп,
  • ТСВнг и др.

Кабель с изоляцией из бумаги:

  • АСБ,
  • АСБ2л,
  • СБ,
  • СБГ и др.

Разновидности кабеля АВВГ и ВВГ:

ВВГ провод относится к типу силовых. Он обладает изоляцией и оболочкой, выполненными из ПВХ, имеет медную жилу, а также не имеет внешней защиты. Среди его разновидностей существуют следующие:

ВВГнгд, нг-нд или нг-ls – не поддерживающий горение и не выделяет дым,

ВВГп: самый ходовой, отличается от ВВГ плоской формой,

ВВГз: наличие жгутов из ПВХ/резины между изоляцией и оболочкой (кембриком),

АВВГ: тот же самый ВВГ, но материал жилы алюминий. Бывает в нг и нгд исполнениях.

Провода подразделяются на одножильные и многожильные. Однако количество жил в них может быть различным. К примеру, ВВГ кабель может иметь до четырёх, пяти жил. Это медный круглый кабель для прокладки в земле. Обладающий двойной изоляцией. СИП, известный как самонесущий изолированный провод, может иметь от одной (СИП-3 1х50-20) до четырех жил (СИП-5 4х35). Обладающий одинарной изоляцией.

Рассмотрим показатели наиболее популярных проводов:

голоса
Рейтинг статьи
Читать еще:  Как подключить телефонную розетку если 4 кабеля
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector