Наибольший ток кабельной линии
Однофазные замыкания на землю. Компенсация емкостных токов замыкания на землю. ДГР
1. Основные характеристики ОЗЗ
Одним из наиболее частых видов повреждений на линиях электропередачи является однофазное замыкание на землю (ОЗЗ) — это вид повреждения, при котором одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей. ОЗЗ является наиболее распространенным видом повреждения, на него приходится порядка 70-90 % всех повреждений в электроэнергетических системах. Протекание физических процессов, вызванных этим повреждением, в значительной мере зависит от режима работы нейтрали данной сети.
В сетях, где используется заземленная нейтраль, замыкание фазы на землю приводит к короткому замыканию. В данном случае ток КЗ протекает через замкнутую цепь, образованную заземлением нейтрали первичного оборудования. Такое повреждение приводит к значительному скачку тока и, как правило, незамедлительно отключается действием РЗ, путем отключения поврежденного участка.
Электрические сети классов напряжения 6-35 кВ работают в режиме с изолированной нейтралью или с нейтралью, заземленной через большое добавочное сопротивление. В этом случае замыкание фазы на землю не приводит к образованию замкнутого контура и возникновению КЗ, а ОЗЗ замыкается через емкости неповрежденных фаз.
Величина этого тока незначительна (достигает порядка 10-30 А) и определяется суммарной емкостью неповрежденных фаз. На рис. 1 показаны схемы 3-х фазной сети в режимах до и после возникновения ОЗЗ.
Рисунок 1 – Схема сети с изолированной нейтралью а) в нормальном режиме; б) при ОЗЗ
Такое повреждение не требует немедленного отключения, однако, его длительное воздействие может привести к развитию аварийной ситуации. Однако при ОЗЗ в сетях с изолированной нейтралью происходят процессы, влияющие на режим работы электрической сети в целом.
На рис. 2 представлена векторная диаграмма напряжений.
Рисунок 2 – Векторные диаграммы напряжений а) в нормальном режиме; б) при ОЗЗ
При ОЗЗ происходит нарушение симметрии линейных фазных напряжений, напряжение поврежденной фазы снижается практически до 0, а двух “здоровых” фаз поднимаются до уровня линейных. При этом линейные напряжения остаются неизменными.
2. Последствия ОЗЗ
Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:
- В зависимости от разветвленности сети емкостной ток может находиться в пределах от 0,1 до 500 ампер. Такая величина тока может представлять опасность для животных и людей, находящихся рядом с местом замыкания, по этой причине данные замыкания нужно выявлять и отключать, так же, как это делается и в сетях с глухозаземленной нейтралью.
- В большинстве случаев при ОЗЗ возникает дуговое замыкание на землю, которое может носить прерывистый характер. В таком случае, в процессе дугового замыкания возникают перенапряжения, превышающие в 2-4 раза номинальное фазное напряжение. Изоляция в процессе замыкания может не выдержать такие перенапряжения, вследствие чего возможны возникновения пробоя изоляции в любой другой точке сети и тогда замыкание развивается в двойное короткое замыкание на землю.
- В процессе развития и ликвидации ОЗЗ в трансформаторах напряжения возникает эффект феррорезонанса, что с высокой вероятностью приводит к их преждевременному выходу из строя.
Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.
3. Расчет суммарного тока ОЗЗ
При замыкании на землю фазы одной из нескольких ЛЕП, что включенные к общему источнику, суммарный ток в месте замыкания за счет емкостных токов всех ЛЕП можно рассчитать несколькими методами.
Первый метод заключается в использовании удельных емкостей ЛЭП. Этот способ расчета даст наиболее точный результат и является предпочтительным. Удельные емкости ЛЭП можно взять из справочной литературы, или же из технических характеристик кабеля, предоставляемых заводом-изготовителем.
Выражение для определения тока ОЗЗ:
,
где С∑ – суммарная емкость фазы всех ЛЕП, причем С∑ = Суд l;
Суд – удельная емкость фазы сети относительно земли, Ф/км;
l – общая длина проводника одной фазы сети.
Второй метод применим для сетей с кабельными ЛЭП. Ток замыкания на землю для такой сети можно определить по эмпирической формуле:
,
где UНОМ – номинальное линейное напряжение сети, кВ;
li – длина кабельной линии, км;
qi – сечение жилы кабеля, мм 2 .
Кроме этих методов для расчета суммарного тока ОЗЗ, можно использовать значения емкостных токов каждого кабеля взятых из справочной литературы.
4. Компенсационные меры защиты
Из-за распределённой по воздушным и кабельным линиям электропередач ёмкости, при ОЗЗ в месте повреждения протекает ёмкостный ток. В наиболее тяжелых случаях, возможно возникновение электрической дуги, горение которой может приводить к переходу ОЗЗ в двух- или трёхфазное замыкание и отключению линии релейной защитой. Вследствие этого потребитель электроэнергии может временно лишиться электроснабжения.
В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.
Для предотвращения возникновения дуги и уменьшения емкостных токов применяют компенсацию емкостных токов. Значения емкостных токов, при превышении которых требуется компенсация согласно ПУЭ и ПТЭ, приведены табл. 1.
Таблица 1 – Значения токов требующие компенсации
Напряжение сети, кВ | 6 | 10 | 20 | 35 |
Емкостный ток, А | 30 | 20 | 15 | 10 |
При более низких уровнях токов считается, что дуга не загорается, или гаснет самостоятельно, применение компенсации в этом случае не обязательно.
5. Дугогасящий реактор
Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (рис. 3).
Рисунок 3 – Дугогасящий реактор
Этот способ является наиболее эффективным средством защиты электрооборудования от замыканий на землю и компенсации емкостного тока. С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.
6. Основные характеристики ДГР
Дугогасящий реактор (ДГР) – это электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Главным нормативным документом регламентирующим работу, установку и надстройку ДГР является Р 34.20.179.
Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока. Рекомендуемые схемы подключения ДГР представлены на рис. 4.
Рисунок 4 – Схема подключения ДГР: а) подключение ДГР к трансформаторам СН; б) подключение ДГР к нейтрале силового трансформатора
Индуктивность ДГР подбирается из условия равенства емкостной проводимости сети и индуктивной проводимости реактора. Таким образом, происходит компенсация ёмкостного тока. Ёмкостный ток суммируется в месте замыкания равным ему и противоположным по фазе индуктивным, в результате остается только активная часть, обычно очень малая, это утечки через изоляцию кабельных линий и активные потери в ДГР (как правило, не превышают 5 А), которой недостаточно для возникновения электрической дуги и шагового напряжения. Токоведущие цепи остаются неповреждёнными, потребители продолжают снабжаться электроэнергией.
Современные ДГР имеют различные конструктивные особенности и производятся для огромного диапазона мощностей. В таблице 2 приведен ряд параметров дугогасящих реакторов разных производителей.
Расчет тока однофазного замыкания на землю в сети с изолированной нейтралью
В данном примере рассмотрим расчет тока однофазного замыкания на землю (ОЗЗ) для подстанции 10 кВ (Схема подстанции представлена на Рис.1). Релейная защита и автоматика всех фидеров выполнена на микропроцессорных терминалах SEPAM S40 (фирмы Schneider Electric).
Рис.1 — Схема подстанции 10 кВ
1. Чтобы повысить точность наших расчетов при определении ОЗЗ используем метод, основанный на определении удельного емкостного тока замыкания на землю. (Также значения удельного емкостного тока замыкания на землю, можно использовать из справочных данных из таблицы 1, либо же взять из технических характеристик кабеля, которые предоставляет Завод-изготовитель)
- Uф — фазное напряжение сети, кВ;
- ω = 2Пf = 314(рад/с);
- Со — емкость одной фазы сети относительно земли (мкФ/км);
2. После того как мы определили удельный емкостной ток замыкания на землю, рассчитываем собственный емкостной ток кабельной линии:
Таблица 1 — Удельное значения емкостных токов в кабельных сетях (А/км)
Результаты расчетов заносим в таблицу 2.
Таблица 2 — Результаты расчетов
Наименование присоединения | Тип реле защиты | Марка кабеля, сечение, мм.кв | Длина, км | Удельный емкостной ток замыкания на землю Iс, А/км | Собственный емкостной ток кабельной линии Iс.фид.макс,А |
---|---|---|---|---|---|
КЛ-10 кВ №1 | SEPAM S40 | АПвЭВнг-3х120 | 0,5 | 1,89 | 0,945 |
КЛ-10 кВ №2 | SEPAM S40 | АПвЭВнг-3х95 | 0,3 | 1,71 | 0,513 |
КЛ-10 кВ №3 | SEPAM S40 | АПвЭВнг-3х70 | 0,7 | 1,55 | 1,085 |
КЛ-10 кВ №4 | SEPAM S40 | АПвЭВнг-3х95 | 0,3 | 1,71 | 0,513 |
КЛ-10 кВ №5 | SEPAM S40 | АПвЭВнг-3х70 | 0,2 | 1,55 | 0,31 |
КЛ-10 кВ №6 | SEPAM S40 | АПвЭВнг-3х95 | 0,6 | 1,71 | 1,026 |
3. Рассчитываем ток срабатывания защит, при этом отстраиваемся от собственного емкостного тока по формуле (данное условие обеспечивает несрабатывание защиты при внешнем однофазном замыкании на землю):
- Кн – коэффициент надежности (принимаем равным 1,2);
- Кбр – коэффициент «броска», который учитывает бросок емкостного тока в тот момент, когда возникает ОЗЗ;
- Ic.фид.макс– максимальный емкостный ток защищаемого фидера.
Для электромеханических реле рекомендуется принимать Кбр= 2–3. При этом защита выполняется без выдержки времени. При использовании для защиты от ОЗЗ современных цифровых реле, можно принимать значения Кбр=1–1,5 (обращаю Ваше внимание, что данный коэффициент лучше уточнить у фирмы-изготовителя). Для SEPAM S40 рекомендуется принимать Кбр= 1-1,5.
Первичный ток срабатывания защит составляет:
- КЛ-10 кВ №1 Iсз = 1,134 А;
- КЛ-10 кВ №2 Iсз = 0,62 А;
- КЛ-10 кВ №3 Iсз = 1,3 А;
- КЛ-10 кВ №4 Iсз = 0,62 А;
- КЛ-10 кВ №5 Iсз = 0,37 А;
- КЛ-10 кВ №6 Iсз = 1,23 А
4. Проверяем чувствительность защит, с учетом, что будет включено минимальное количество включенных линий, в нашем случае это все присоединения, которые находятся на секции.
Обращаю Ваше внимание, что коэффициент чувствительности согласно ПУЭ пункт 3.2.21 равен: для кабельных линий — 1,25, для воздушных линий — 1,5. В книге «Расчеты релейной защиты и автоматики распределительных сетей. М.А. Шабад -2003 г» приводиться Кч=1,5-2,0. В данном расчете, я принимаю коэффициент чувствительности по ПУЭ. Какой коэффициент чувствительности принять, выбирайте уже сами.
где:
IсΣmin — наименьшее реальное значение суммарного емкостного тока.
В моем случае наименьшее реальное значение суммарного емкостного тока, является суммарный емкостной ток по секциям:
- I секция — IсΣmin = 2,543 (А);
- II секция — IсΣmin = 1,849 (А);
5. Определяем время срабатывания защит от ОЗЗ: Для всех отходящих кабельных линий 10 кВ время срабатывания защит принимаем равным 0,1 сек.
Таблица 3 — Результаты расчетов срабатывания защит от ОЗЗ
Для присоединений КЛ-10 кВ №3 и №6 чувствительности защиты недостаточно, поэтому мы должны применить вместо терминала Sepam S40 → терминал Sepam S41 или S42, который позволит выполнить направленную защиту нулевой последовательности.
Для того что бы не тратить много времени на расчет вручную, была сделана: «Программа по расчету уставок защиты от замыканий на землю.
- Расчеты релейной защиты и автоматики распределительных сетей. М.А. Шабад -2003 г.
- РД 34.20.179 Типовая инструкция по компенсации емкостного тока замыкания на землю в электрических сетях 6-35 кВ — 1993 г.
- Замыкания на землю в сетях 6–35 кВ. Расчет уставок ненаправленных токовых защит. Шалин А.И. // Новости ЭлектроТехники. – 2005 г.
Эксплуатация кабельных линий 1-35 кВ — Определение допустимой длительной токовой нагрузки на кабельную линию
Содержание материала
Требованием Правил технической эксплуатации предусматривается, чтобы для каждой кабельной линии при вводе ее в эксплуатацию были установлены наибольшие допустимые токовые нагрузки. Это требование ПТЭ обусловлено тем, что длительная перегрузка кабельной линии может вызвать перегрев изоляции выше допустимого предела, ее преждевременное старение, а затем и повреждение в результате тепловой неустойчивости кабеля. Поэтому токовые нагрузки на кабельные линии устанавливаются такими, чтобы нагрев токопроводящих жил не превышал определенных значении, а следовательно возможность перегрева изоляции была бы исключена.
Действующими ГОСТ для кабелей с пропитанной бумажной изоляцией и с пластмассовой изоляцией установлены следующие максимально допустимые значения температур для токопроводящих жил:
Бумажная ИЗОЛЯЦИЯ, ° С
Пластмассовая
ИЗОЛЯЦИЯ, ° С
В режиме короткого замыкания Правилами устройства электроустановок допускается кратковременное повышение температуры токопроводящих жил для кабелей с бумажной изоляцией напряжением до 10 кв с медными и алюминиевыми жилами до 200° С, на напряжение 20—35 кВ — до 125° С, кабелей с поливинилхлоридной изоляцией до 150° С, а с полиэтиленовой — до 120° С. В процессе эксплуатации силового кабеля в нем выделяется значительное количество тепла. Источником его является тепло, выделяющееся в токопроводящих жилах при прохождении электрического тока нагрузки, а также для кабелей высокого напряжения и одножильных за счет потерь в изоляции, металлических оболочках и броне.
Мощность Р, переходящая в тепло Q, которое выделяется в токопроводящих жилах трехфазного кабеля, составляет:
где I — величина тока нагрузки кабеля, a; R — сопротивление жил, ом; п — количество жил (в данном случае 3).
Таким образом, нагрев кабеля пропорционален квадрату силы тока, протекающему по его токопроводящим жилам, и чем выше токовая нагрузка кабеля, тем выше поднимается температура токопроводящих жил.
Процесс повышения температуры жил и нагревания кабеля не будет беспредельным, так как сопровождается рассеиванием тепла в окружающее пространство. С повышением температуры кабеля одновременно повышается разность температур между кабелем и средой, где он проложен. Чем выше эта разность, тем интенсивнее будет происходить отдача тепла в окружающую среду. В какой-то момент разность температур достигнет такой величины, при которой все выделяемое тепло будет переходить в окружающую среду и температура токопроводящих жил больше повышаться не будет.
* Без учета температурного коэффициента удельного электрического сопротивления.
Такое состояние называется установившимся режимом работы кабельной линии. При этом
Приведенное выражение называется тепловым законом Ома, где разность температур жилы и среды (tm — *ср) в нем соответствуют разности потенциалов, величина s соответствует сопротивлению тепловому потоку или тепловому сопротивлению и тепловых омах по аналогии с сопротивлением R цепи электрического тока, a Q — величина теплового потока — величине электрического тока I.
Величина суммарного теплового сопротивления s кабеля и окружающей среды слагается из теплового сопротивления: изоляции кабеля — sb защитных покровов — s2, поверхности кабеля — ss, а также окружающей почвы —
В случае прокладки кабеля в блочной канализации величина суммарного теплового сопротивления должна учитывать дополнительно s5 — сопротивление массива блока и se — сопротивление от поверхности блока к почве.
Таким образом, величина суммарного теплового сопротивления кабеля определяется способом прокладки.
Так, при прокладке кабеля в земле (траншее)
S = S1 + s2 + s4.
при прокладке кабеля в воздухе S = S1 + s2 + s3.
Чем меньшее сопротивление оказывается тепловому потоку, тем интенсивнее будет происходить отдача тепла во внешнюю среду, тем ниже будет температура токопроводящей жилы и тем большую нагрузку можно допустить на кабель. В наиболее благоприятных условиях в отношении теплового режима находится кабель, проложенный в проточной воде. Вода обеспечивает наилучшие условия отвода тепла с поверхности кабеля, и благодаря наличию течения сопротивление тепловому излучению в этом случае практически равно нулю. Поэтому длительно допустимые нагрузки на кабель, проложенный в воде, являются наибольшими. При прокладке кабельной линии в земле — траншее большое влияние на величину теплового сопротивления имеет состав грунта, его способность удерживать влагу.
Песок, гравий, обладая высокой пористостью, имеют большее сопротивление, чем глинистые почвы. Наличие воздушных промежутков между кабелем и грунтом в траншее приводит к сильному возрастанию теплового сопротивления. Этим обстоятельством и вызвано требование ПУЭ об устройстве для кабелей, прокладываемых в земле, снизу подсыпки, а сверху засыпки мелкой землей, не содержащей камней, строительного мусора и шлака.
Качество грунта, его тщательное уплотнение в момент засыпки проложенного в траншее кабеля имеют решающее влияние на тепловой режим работы кабельной линии. Кабель, проложенный в воздухе, находится в менее благоприятных условиях в отношении нагрева, чем кабель, проложенный в земле. Это объясняется значительной величиной сопротивления тепловому излучению от поверхности кабеля в воздух. По этой причине и допустимые нагрузки на кабель, проложенный в воздухе, ниже аналогичного кабеля, проложенного в земле.
В особо неблагоприятных условиях в отношении нагрева находятся кабели, прокладываемые в блочной канализации. Последовательное включение ряда дополнительных тепловых сопротивлений, как воздуха в канале, стенок блока, взаимный подогрев кабелей, расположенных в несколько рядов, создают крайне тяжелый тепловой режим работы кабелей блока. Естественно, что этому способу прокладки соответствуют минимальные значения допустимых нагрузок по сравнению со всеми другими способами прокладки (в земле, в воздухе, в коллекторах и туннелях).
Зная допустимые по ГОСТ или ТУ температуры нагрева токопроводящих жил, можно определить величину допустимого на кабель тока:
откуда
где im = tmu — допустимая по ГОСТ температура нагрева токопроводящей жилы кабеля; IСр — температура среды, где кабель проложен; п — число жил кабеля; Es — суммарное значение последовательно включенных тепловых сопротивлений в тепловых омах*.
*Тепловым сопротивлением в один тепловой ом обладает тело размерами в 1 см которое при разности температур на противоположных поверхностях в 1° пропускает через себя тепловой поток мощностью 1 вт.
Таким образом, допустимая расчетная нагрузка на кабель обратно пропорциональна 2s, т. е. суммарному значению последовательно включенных тепловых сопротивлений самого кабеля и сопротивления внешней среды (земли или воздуха), где кабель проложен. Тепловое сопротивление кабеля не является величиной постоянной и возрастает в процессе его эксплуатации в связи с высыханием изоляции и наружных покровов. Тепловое сопротивление земли определяется, как нами было установлено выше, пористостью и способностью грунта удер живать влагу.
Опытные данные показывают, что для средних и больших сечений тепловое сопротивление самого кабеля составляет лишь 30—35% общего теплового сопротивления кабеля и среды прокладки. Теплоотдача в землю или в воздух, таким образом, является решающей при определении допустимой нагрузки на кабель.
Выполнение расчетов допустимых токов нагрузок в каждом отдельном случае и для большого числа кабельных линий, находящихся в эксплуатации, по изложенному выше способу сложно, требует больших затрат времени и труда. Поэтому расчетные значения длительно допустимых токов нагрузки для кабелей в зависимости от сечения, напряжения и условий прокладки установлены Правилами устройства электроустановок и приведены в табл. 1. Из приведенных в табл. 1 значений легко вывести соотношение допустимых нагрузок для трехжильных кабелей с поясной изоляцией в зависимости от вида прокладки. В табл. 2 приводятся эти данные для средних и больших сечений кабеля, принимая за единицу прокладку в земле.
Как видно из приведенных данных, допустимая нагрузка на кабель, проложенный в воздухе, примерно на 25—30% ниже допустимой нагрузки на аналогичный
Таблица 1
Допустимые длительные расчетные нагрузки для кабелей с медными (в числителе) и алюминиевыми (в знаменателе)
жилами с нестекающей и маслоканифольной нормально пропитанной бумажной изоляцией в общей свинцовой или алюминиевой оболочке, а также с отдельно освинцованными (или отдельно опрессованными) алюминиевыми оболочками, в зависимости от условий прокладки
Продолжение табл. I
Таблица 2
Соотношение допустимых нагрузок в зависимости от способа прокладки
Установка испытательно-поисковая комбинированная УПП-1510
Обзор
Назначение УПП-1510
Установка комбинированная поисково-прожигающая УПП-1510 предназначена для прожига поврежденной изоляции силовых электрических кабелей и точного определения места повреждения кабеля акустическим методом. Мобильная установка УПП 1510 является оптимальным решением при создании малобюджетной электролаборатории для поиска места повреждения дефектной изоляции кабеля.
Область применения УПП-1510
Установка поисково-прожигающая может использоваться как отдельная мобильная установка прожига и акустики, так и встраиваться в кабельную электролабораторию ЭТЛ.
Установка УПП-1510 выполняет следующие функции:
- прожиг поврежденной изоляции кабеля,
- определение места повреждения кабеля акустическим методом.
Особенности УПП-1510
- Две функции в одном конструктивном исполнении.
- Мобильность – моноблочная конструкция на колёсах для перевозки.
- При переключении ступеней снятия напряжения заряда кабельной линии не производится. Разрыв дуги происходит только на время переключения ступеней оператором (1…2 сек.)
- После полного отключения установки автоматически производится разряд кабельной линии через демпфирующий резистор.
- Система ограничения мощности обеспечивает необходимый температурный режим работы высоковольтного трансформатора установки при указанных характеристиках ступеней прожига и тока потребления.
- Возможность начала работы с любой ступени прожига (при работе с низковольтными кабелями)
- Переключение между режимами «Прожиг – Акустика» осуществляется ручным коммутатором с контролем положения.
Характеристики
Технические характеристики УПП-1510
Параметр | Значение |
---|---|
Напряжение питающей сети однофазного переменного тока | 220+22В |
Частота питающей сети | 50 Гц |
Максимальный потребляемый ток в режиме «Прожиг» | 20 А |
Максимальный потребляемый ток в режиме «Акустика» | 4 А |
Характеристики в режиме «Прожиг»: | |
Максимальное напряжение на выходе, В (при U сети 220В) | 15 000 |
Максимальный ток дожига, А | 30 |
Напряжение ступени в режиме ХХ, В Ступень 1 DC: 15000 (± 600) Ступень 2 DC: 10000 (± 400) Ступень 3 DC: 5200 (± 300) Ступень 4 DC: 2600 (± 200) Ступень 5 AC: 700 (± 70) Дожиг, AC: 70 (± 10) | Номинальный ток в режиме КЗ, А 0,15 ± 0,03 0,3 ± 0,03 0,6 ± 0,06 0,8 ± 0,1 4,5± 0,4 30 ± 3 |
Характеристики в режиме «Акустика»: | |
Напряжение импульса, кВ | 0 …10, плавная регулировка |
Максимальная энергия импульса, Дж | 1000 |
Частота следования импульсов | 6 …12 секунд, ручной режим |
Режимы эксплуатации: | |
В режиме «Прожиг» при коротком замыкании | 30 минут работа / 30 минут перерыв |
В режиме «Акустика» при автоматическом следовании импульсов | 30 минут работа / 30 минут перерыв |
В режиме прожига на холостом ходу или малом количестве пробоев | 60 минут работа / 30 минут перерыв |
Массогабаритные характеристики: | |
Габаритные размеры (корпус силового блока, без колесной пары и ручек), мм | не более 570х600х800 |
Масса (силовой блок), кг | не более 110 |
Гарантийный срок эксплуатации: 12 месяцев.
Комплектация
Состав комплекта
- Установка УПП-1510 моноблок на колесной паре
- Кабель электропитания 2 м
- Кабель защитного заземления 2 м
- Руководство по эксплуатации
Если Вас интересует цена на Установка испытательно-поисковая комбинированная УПП-1510 Вы можете позвонить по тел. или отправить запрос на email: sales@technoac.ru
Ищем производителей печатных плат и узлов для контрактного производства.