15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Допустимые токи утечки для кабелей при испытаниях

Испытание кабелей

Силовая кабельная линия — это линия для передачи электрической энергии, состоящая из одного или нескольких параллельных кабелей с соединительными. стопорными и концевыми муфтами (заделками) и крепежными деталями. В силовых кабельных линиях наиболее широко используются кабели с бумажной и пластмассовой изоляцией. Тип изоляции силовых кабелей и их конструкция влияют не только на технологию монтажа, но и на условия эксплуатации силовых кабельных линий. В особенности это касается кабелей с пластмассовой изоляцией. Так в результате изменяющихся при эксплуатации нагрузок и дополнительного нагрева, обусловленного перегрузками и токами короткого замыкания, в изоляции кабелей возникает давление от увеличивающегося при нагреве полиэтилена (поливинилхлорида), которое может растягивать экраны и оболочки кабелей, вызывая их остаточные деформацию. При последующем охлаждении вследствие усадки в изоляции образуются газовые или вакуумные включения, являющиеся очагами ионизации. В связи с этим будут изменяться ионизационные характеристики кабелей. Сравнительные данные по величине температурного коэффициента объемного расширения различных материалов, используемых в конструкциях силовых кабелей приведенные в таблице 1.

Таблица 1. Температурные коэффициенты объемного расширения материалов, применяемых в конструкции силовых кабелей

Температурный коэффициент объемного расширения на 1°С при 20°С

Полиэтилен высокого давления

0-50°С — 670 50-100°С — 1560-1650

При этом следует отметить, что наибольшая величина температурного коэффициента объемного расширения имеет место при температурах 75-125°С. соответствующего нагреву изоляции при кратковременных перегрузках и токах короткого замыкания.

Бумажная пропитанная изоляция жил кабелей имеет высокие электрические характеристики. продолжительные срок службы и сравнительно высокую температуру нагрева. Кабели с бумажной изоляцией лучше сохраняют свои электрические характеристики в процессе эксплуатации при возникавших частых перегрузах и связанных с этим дополнительных нагревах.

Для обеспечения длительной и безаварийной работы кабельных линий необходимо, чтобы температура жил и изоляции кабеля в процессе эксплуатации не превышала допустимых пределов.

Длительно допустимая температура токопроводящих жил и допустимый их нагрев при токах короткого замыкания определяются материалом изоляции кабеля. Максимально допустимые температуры жил силовых кабелей для различного материала изоляции жил приведены в табл. 2.

Таблица 2. Максимально допустимые температуры жил силовых кабелей

Напряжение кабеля, кВ

Длительно допустимая температура жил кабеля, РС

Допустимый нагрев жил при токах короткого замыкания, °С

Резиновая повышенной теплостойкости

Примечание: Допустимый нагрев жил кабелей из поливинилхлоридного пластиката и полиэтилена в аварийном режиме должен быть не более 80°С, из вулканизирующегося полиэтилена – 130°С.

Продолжительность работы кабелей в аварийном режиме не должна превышать 8 ч в сутки и 1000 час. за срок службы. Кабельные линии напряжением 6-10 кВ, несущие нагрузки меньше номинальных, могут кратковременно перегружаться при условиях, приведенных в табл. 3.

Таблица 3. Допустимые перегрузки по отношению к номинальному току кабельных линий напряжением 6-10 кВ

Коэффициент предварительной нагрузки

Допустимая перегрузка длительностью, час.

В трубах (в земле)

В трубах (в земле)

Примечание: Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%. Перегрузка кабельных линий на напряжение 20 ÷35 кВ не допускается.

Любая силовая кабельная линия помимо своего основного элемента — кабеля, содержит соединительные и концевые муфты (заделки), которые оказывают значительное влияние на надежность всей кабельной линии.

В настоящее время при монтаже, как концевых муфт (заделок) так и соединительных муфт широкое применение находят термоусаживаемые изделия из радиационно-модифицированного полиэтилена. Радиационное облучение полиэтилена приводит к получению качественно нового электроизоляционного материала, обладающего уникальными комплексами свойств. Так, его нагревостойкость возрастает с 80 °С до 300°С при кратковременной работе и до 150 °С при длительной. Этот материал отличается высокими физико-механическими свойствами: термостабильностью, хладостойкостью, стойкостью к агрессивным химическим средам, растворителями, бензину, маслам. На ряду со значительной эластичностью он обладает высокими диэлектрическими свойствами, сохраняющимися при весьма низких температурах. Термоусаживаемые муфты и заделки монтируют как на кабелях с пластмассовой, так и кабелях с бумажной пропитанной изоляцией.

Проложенный кабель подвергается воздействию агрессивных компонентов среды, которые обычно являются разбавленными в той или иной степени химическими соединителями. Материалы, из которых изготовлены оболочка и броня кабелей, имеют разную коррозийную стойкость.

Свинец устойчив в растворах, содержащих серную, сернистую, фосфорную, хромовую и фторно-водородную кислоты. В соляной кислоте свинец устойчив при ее концентрации до 10%.

Наличие хлористых и сульфатных солей в воде или почве вызывает резкое торможение коррозии свинца. поэтому свинец устойчив в солончаковых почвах морской воде.

Азотно-кислотные соли (нитраты) вызывают сильную коррозию свинца. Это весьма существенно, так как нитраты образуются в почве в процессе микробиологического распада и вносятся в нее в виде удобрений. Почвы по степени возрастания их агрессивности по отношению к свинцовым оболочкам можно распределить следующим образом:

а) солончаковые; б) известковые; в) песчаные; г) черноземные; д) глинистые; е) торфяные.

Углекислота и фенол значительно усиливает коррозию свинца. Свинец устойчив в щелочах.

Алюминий устойчив в органических кислотах и неустойчив в соляной, фосфорной, муравьиной кислотах. а также в щелочах. Сильно агрессивное действие на алюминий оказывают соли, при гидролизе которых образуются кислоты или щелочи. Из нейтральных солей (рН=7) наибольшей активностью обладают соли, содержащие хлор, так как образующиеся хлориды разрушают защитную пленку алюминия, поэтому наиболее агрессивными для алюминиевых оболочек являются солончаковые почвы. Морская во да, главным образом из-за наличия в ней ионов хлора, также является для алюминия сильно агрессивной средой. В растворах сульфатов, нитратов и хромов алюминий достаточно устойчив. Коррозия алюминия значительно усиливается при контакте с более электроположительным металлом, например свинцом, что, имеет место при установке соединительных муфт, если не принято специальных мер.

При монтаже свинцовой соединительной муфты на кабеле с алюминиевой оболочкой образуется контактная гальваническая пара свинец-алюминий, в которой алюминий является анодом, что может вызвать разрушение алюминиевой оболочки через несколько месяцев после монтажа муфты. При этом повреждение оболочки происходит на расстоянии 10-15 см от шейки муфты, т.е. на том месте, где с оболочки при монтаже снимаются защитные покровы. Для устранения вредного действия подобных гальванических пар муфту и оголенные участки алюминиевой оболочки покрывают кабельным составом марки МБ-70(60), разогретом до 130 °С, и сверху накладывают липкую поливинилхлоридную ленту в два слоя с 50%-ным перекрытием. Поверх липкой ленты накладывают слой просмоленной ленты с последующим покрытием ее битумным покровным лаком марки БТ-577.

Читать еще:  Формула для выбора сечения кабеля по току

Поливинилхлоридный пластикат негорюч, обладает высокой стойкостью против действия большинства кислот, щелочей и органических растворителей. Однако его разрушают концентрированные серная и азотная кислоты, ацетон и некоторые другие органические соединения. Под воздействием повышенной температуры и солнечной радиации поливинилхлоридный пластикат теряет свою пластичность и морозостойкость.

Полиэтилен обладает химической стойкостью к кислотам, щелочам, растворам солей и органическим растворителям. Однако полиэтилен под воздействием ультрафиолетовых лучей становится хрупким и теряет свою прочность.

Резина, применяемая для оболочек кабелей, хорошо противостоит действию масел, гидравлических и тормозных жидкостей, ультрафиолетовых лучей, а также микроорганизмов. Разрушающие действуют на резину растворы кислот и щелочей при повышенных температурах.

Броня, изготавливаемая из низко углеродной стали, обычно разрушается намного раньше, чем начинает коррозировать оболочка. Броня сильно коррозирует в кислотах и весьма устойчива в щелочах. Разрушающее действуют на нее сульфатвосстанавливаю щие бактерии, выделяющие сероводород и сульфиды.

Покровы из кабельной пряжи и битума практически не защищают оболочку от контакта с внешней средой и довольно быстро разрушаются в почвенных условиях.

Электрохимическая защита кабелей от коррозии осуществляется путем катодной поляризации их металлических оболочек, а в некоторых случаях и брони, т.е. накладыванием на последние отрицательного потенциала. В зависимости от способа электрической защиты катодная поляризация достигается присоединением к оболочкам кабелей катодной станции, дренажной и протекторной защиты. При выборе способа защиты учитывается основной фактор, вызывающий коррозию в данных конкретных условиях.

Марка силового кабеля характеризует основные конструктивные элементы и область применения кабельной продукции.

Буквенные обозначения конструктивных элементов кабеля приведены в табл. 4.

Таблица 4. Буквенные обозначения конструктивных элементов кабеля

Испытание кабелей — Нормы приемо-сдаточных испытаний силовых кабельных линий

Содержание материала

Объем приемо-сдаточных испытаний.

В соответствии с требованиями ПУЭ объем приемо-сдаточных испытаний силовых кабельных линий включает следующие работы.

1. Проверка целостности и фазировки жил кабеля.

2. Измерение сопротивления изоляции.

3. Испытание повышенным напряжением выпрямленного тока.

4. Испытание повышенным напряжением промышленной частоты.

5. Определение активного сопротивления жил.

6. Определение электрической рабочей емкости жил.

7. Измерение распределения тока по одножильным кабелям.

8. Проверка защиты от блуждающих токов.

9. Испытание на наличие нерастворенного воздуха (пропиточное испытание).

10. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.

11. Контроль состояния антикоррозийного покрытия.

12. Проверка характеристик масла.

13. Измерение сопротивления заземления.

Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13.

Силовые кабельные линии напряжением выше 1 кВ и до 35 кВ — по п.п.1-3, 6, 7, 11, 13, а напряжением 110 кВ и выше — в полном объеме, предусмотренным настоящей инструкцией.

Проверка целостности и фазировки жил кабеля.

Перед включением кабеля в работу производится его фазировка, т.е. обеспечивается соответствие фаз кабеля фазам присоединяемого участка электроустановки. Проверка производится прозвонкой с помощью телефонных трубок или мегаомметра. На основании проверки производится раскраска жил в соответствии с раскраской принятой на данной установке.

Технология «прозвонки» с помощью телефонных трубок заключается в следующем: один работник подсоединяет свою телефонную трубку к жиле кабеля и оболочке (заземленной части электропроводки), а другой поочередно к жилам кабеля со своей стороны, пока не дойдет до той жилы, к которой подключился первый работник. При этом устанавливается телефонная связь между работниками и они могут договориться о порядке проверки другой жилы. На проверенные жилы навешивают временные бирки с соответствующей маркировкой. Проверка жил «прозвонкой» будет успешной, если исключить возможность образования обходных цепей. Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле; для этого подсоединяют трубку к каждой из оставшихся жил и убеждаются, что связи по ним нет. Для «прозвонки» используют низкоомные телефонные трубки, а в качестве источника питания — батарейку от карманного фонаря.

После предварительной прозвонки перед включением кабельной линии в работу производится фазировка ее под напряжением. Для этого с одного конца кабеля подается рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений между одноименными и разноименными фазами. Газировка производится вольтметрами (в сетях до 1кВ) или вольтметрами с трансформаторами напряжения, а также с помощью указателей напряжения типа УВН-80, УВНФ и др. (в сетях напряжением выше 1 кВ),

Порядок проведения фазировки в линиях различного напряжения примерно одинаков. Так фазировка кабельной линии с помощью указателей напряжения выполняется в следующей последовательности (см. рис. 1). Проверяется исправность указателя напряжения, для чего щупом трубки без неоновой лампы касаются заземления, а щуп другой трубки подносят к жиле кабеля находящегося под напряжением, при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной жилы находящей под напряжением. Лампа индикатора при этом гореть не должна. После этого проверяется наличие напряжения на выводах электроустановки и кабеля (см. рис. 1в). Данную проверку производят для того, чтобы исключить ошибку при фазировке линии имеющей обрыв (например, из-за неисправности предохранителя). Процесс собственно фазировки состоит в том, что щупом одной трубки указателя касаются любого крайнего вывода установки, например фазы С, а щупом другой трубки — поочередно трех выводов со стороны фазируемой линии (см. рис. 1г). В двух случаях касания (С-А 1 и С-B1) неоновая лампа загорается, в третьем (С-С1) лапа гореть не будет, что укажет на одноименность фаз. Аналогично определяют другие одноименные фазы.

Читать еще:  Трех как подключить выключатель с подсветкой

Рис. 1. Последовательность операций при фазировке линии 10 кВ указателем напряжения типа УВНФ.

а, б — проверка исправности указателя напряжения; в — проверка наличия напряжения на выводах; г — фазировка

Измерение сопротивления изоляции.

Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется, но должно быть порядка десятка МОм и выше. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Методика измерения сопротивления и приборы, используемые при этом, представлены испытаниях изоляции электрооборудования повышенным напряжением.

Перед началом измерения сопротивления изоляции на кабельной линии необходимо:

1. Убедиться в отсутствии напряжения на линии.

2. Заземлить испытуемую цепь на время подключения прибора.

После окончания измерения, прежде чем отсоединять концы от прибора необходимо снять накопленный заряд путем наложения заземления.

Разрядку кабеля необходимо производить при помощи специальной разрядной штанги сначала через ограничительное сопротивление, а затем накоротко. Короткие участки кабеля длиной до 100 м можно разряжать без ограничительного сопротивления.

При измерении сопротивления изоляции кабельных линий большой длины, необходимо помнить, что они обладают значительной емкостью, поэтому показания мегаомметра следует отмечать только после окончания заряда кабеля.

Категорически запрещается измерять сопротивление изоляции на кабельной линии, если она хотя бы на небольшом участке проходит вблизи другой линии, находящейся под напряжением.

Испытание повышенным напряжением выпрямленного тока.

Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока.

Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 5.

Таблица 5. Испытательные напряжения выпрямленного тока для силовых кабелей

Испытательные напряжения, кВ; для кабелей на рабочее напряжение, кВ

ПУЭ-7 п.1.8.40 Нормы приемо-сдаточных испытаний. Силовые кабельные линии

Силовые кабельные линии

Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13, напряжением выше 1 кВ и до 35 кВ — по пп.1-3, 6, 7, 11, 13, напряжением 110 кВ и выше — в полном объеме, предусмотренном настоящим параграфом.

1. Проверка целостности и фазировки жил кабеля. Проверяются целостность и совпадение обозначений фаз подключаемых жил кабеля.

2. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

3. Испытание повышенным напряжением выпрямленного тока.

Испытательное напряжение принимается в соответствии с табл.1.8.39.

Таблица 1.8.39 Испытательное напряжение выпрямленного тока для силовых кабелей

Кабели с бумажной изоляцией на напряжение, кВ

Кабели с пластмассовой изоляцией на напряжение, кВ

Кабели с резиновой изоляцией на напряжение, кВ

* Испытания выпрямленным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных на воздухе, не производятся.

Для кабелей на напряжение до 35 кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения составляет 10 мин.

Для кабелей с резиновой изоляцией на напряжение 3-10 кВ длительность приложения полного испытательного напряжения составляет 5 мин. Кабели с резиновой изоляцией на напряжение до 1 кВ испытаниям повышенным напряжением не подвергаются.

Для кабелей на напряжение 110-500 кВ длительность приложения полного испытательного напряжения составляет 15 мин.

Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в табл.1.8.40. Абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытания ток утечки должен уменьшаться. Если не происходит уменьшения значения тока утечки, а также при его увеличении или нестабильности тока испытание производить до выявления дефекта, но не более чем 15 мин.

Таблица 1.8.40 Токи утечки и коэффициенты асимметрии для силовых кабелей

Кабели напряжением, кВИспытательное напряжение, кВДопустимые значения токов утечки, мАДопустимые значения коэффициента асимметрии ()
6360.28
10600.58
201001.510
351752.510
110285Не нормируетсяНе нормируется
150347То жеТо же
220610««
330670««
500865««

При смешанной прокладке кабелей в качестве испытательного напряжения для всей кабельной линии принимать наименьшее из испытательных напряжений по табл.1.8.39.

4. Испытание напряжением переменного тока частоты 50 Гц.

Такое испытание допускается для кабельных линий на напряжение 110-500 кВ взамен испытания выпрямленным напряжением.

Испытание производится напряжением (1,00-1,73). Допускается производить испытания путем включения кабельной линии на номинальное напряжение . Длительность испытания — согласно указаниям завода-изготовителя.

5. Определение активного сопротивления жил. Производится для линий 20 кВ и выше. Активное сопротивление жил кабельной линии постоянному току, приведенное к 1 мм сечения, 1 м длины и температуре +20 °С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы. Измеренное сопротивление (приведенное к удельному значению) может отличаться от указанных значений не более чем на 5%.

6. Определение электрической рабочей емкости жил.

Производится для линий 20 кВ и выше. Измеренная емкость не должна отличаться от результатов заводских испытаний более чем на 5%.

7. Проверка защиты от блуждающих токов.

Производится проверка действия установленных катодных защит.

8. Испытание на наличие нерастворенного воздуха (пропиточное испытание).

Производится для маслонаполненных кабельных линий 110-500 кВ. Содержание нерастворенного воздуха в масле должно быть не более 0,1%.

9. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.

Производится для маслонаполненных кабельных линий 110-500 кВ.

10. Проверка антикоррозийных защит.

При приемке линий в эксплуатацию и в процессе эксплуатации проверяется работа антикоррозионных защит для:

Читать еще:  Алиэкспресс стабилизаторы тока светодиодов

— кабелей с металлической оболочкой, проложенных в грунтах со средней и низкой коррозионной активностью (удельное сопротивление грунта выше 20 Ом/м), при среднесуточной плотности тока утечки в землю выше 0,15 мА/дм;

— кабелей с металлической оболочкой, проложенных в грунтах с высокой коррозионной активностью (удельное сопротивление грунта менее 20 Ом/м) при любой среднесуточной плотности тока в землю;

— кабелей с незащищенной оболочкой и разрушенными броней и защитными покровами;

— стального трубопровода кабелей высокого давления независимо от агрессивности грунта и видов изоляционных покрытий.

При проверке измеряются потенциалы и токи в оболочках кабелей и параметры электрозащиты (ток и напряжение катодной станции, ток дренажа) в соответствии с руководящими указаниями по электрохимической защите подземных энергетических сооружений от коррозии.

Оценку коррозионной активности грунтов и естественных вод следует производить в соответствии с требованиями ГОСТ 9.602-89.

11. Определение характеристик масла и изоляционной жидкости.

Определение производится для всех элементов маслонаполненных кабельных линий на напряжение 110-500 кВ и для концевых муфт (вводов в трансформаторы и КРУЭ) кабелей с пластмассовой изоляцией на напряжение 110 кВ.

Пробы масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС должны удовлетворять требованиям норм табл.1.8.41 и 1.8.42.

Таблица 1.8.41 Нормы на показатели качества масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС

Для вновь вводимой линии

Пробивное напряжение в стандартном сосуде, кВ, не менее

Степень дегазации (растворенный газ), не более

Примечание. Испытания масел, не указанных в табл.1.8.39, производить в соответствии с требованием изготовителя.

Таблица 1.8.42 Тангенс угла диэлектрических потерь масла и изоляционной жидкости (при 100, %, не более, для кабелей на напряжение, кВ)

110150-220330-500
0,5/0,8*0,5/0,8*0,5/-

* В числителе указано значение для масел марок С-220, в знаменателе — для МН-3, МН-4 и ПМС

Если значения электрической прочности и степени дегазации масла МН-4 соответствуют нормам, а значения tg δ, измеренные по методике ГОСТ 6581-75, превышают указанные в табл.1.8.42, пробу масла дополнительно выдерживают при температуре 100 °С в течение 2 ч, периодически измеряя . При уменьшении значения tg δ проба масла выдерживается при температуре 100 °С до получения установившегося значения, которое принимается за контрольное значение.

12. Измерение сопротивления заземления.

Производится на линиях всех напряжений для концевых заделок, а на линиях 110-500 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов.

Допустимые токи утечки для кабелей при испытаниях

Какие нормы токов утечек существуют при испытании кабеля 35 из шитого полиэтилена при его испытании рабочим напряжением в течение 24 часов, то же при испытании постоянным напряжением 10 кВ его экранированной оболочки в течение 10 мин? Насколько правомерны и достаточны такие испытания?

На вопрос отвечает Дмитрий Копченков, Руководитель Испытательно-диагностического центра ООО Проектно-конструкторское бюро «Росэнергомонтаж»

Глава 1.8. ПУЭ — «Нормы приёмосдаточных испытаний», а именно в ней подпункт 1.8.1., говорит нам — «При проведении приёмосдаточных испытаний электрооборудования, не охваченного настоящими нормами, следует руководствоваться инструкциями заводов-изготовителей». Так как кабели с изоляцией из сшитого полиэтилена не охвачены этой главой, то следует руководствоваться инструкцией завода-изготовителя. Обычно, заводы-изготовители рекомендуют проводить испытания кабельной линии (КЛ) переменным напряжением частотой 0,1 Гц или переменным номинальным напряжением U0 в течение 24 часов, приложенным между жилой и металлическим экраном. КЛ считается выдержавшей испытания, если не произошло пробоя. При испытании переменным номинальным напряжением в течение 24 часов, измерение токов утечки не производится. Однако, даже исходя из того что, абсолютное значение тока утечки не является браковочным показателем, но КЛ с удовлетворительной изоляцией должны иметь стабильные значения токов утечки и при проведении испытаний он должен уменьшаться. Установки, производящие испытания переменным напряжением частотой 0,1 Гц, позволяют производить измерения токов утечки на отрицательной полуволне испытательного напряжения. Исходя из этого, существует возможность контролировать ток утечки. Как показывает опыт нашей электролаборатории и ряда других, для качественно проложенной и смонтированной КЛ, ток утечки не превышает 100 – 300 мкА. Превышение этих значений говорит о наличии дефекта в КЛ, связанного либо с нарушением технологии прокладки (как пример — проникновение в изоляцию влаги и дальнейшее её распространение в муфты) или монтажа гарнитур (особенно концевых). Рекомендуется в таких случаях производить испытание до пробоя, так как дефект присутствует однозначно.

Оболочка кабеля испытывается постоянным напряжением величиной 5-10 кВ. Рекомендации заводов-изготовителей по времени испытаний также разнятся от 1 до 10 минут. Контрольных значений токов утечки нет. Как, опять же, показывает опыт, для качественно проложенной и смонтированной КЛ, без нарушения целостности внешней защитной оболочки, токи утечки при её испытании не превышают значений в 100 – 300 мкА. Большие значения или их рост однозначно свидетельствуют о наличии дефекта. Так же рекомендуется увеличить время испытаний и переходить к определению места повреждения.

Как показывает опыт, испытания переменным напряжением частотой 0,1 Гц или переменным номинальным напряжением U0 в течение 24 часов, достаточны для выявления грубых дефектов в КЛ. Но в настоящее время уже существуют более щадящие и достоверные методы выявления скрытых дефектов в КЛ, например метод измерения частичных разрядов. Цель и возможность высоковольтных испытаний только выявление грубых дефектов и доведение их до пробоя, но нет возможности выявлять скрытые дефекты на ранней стадии их развития. В настоящий момент уже существуют методики и большой опыт работ основанных на методе измерения частичных разрядов. Позволяющий достоверно выявлять скрытые дефекты на ранних стадиях их развития, а тем более явные дефекты.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector