1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать силу тока лампы накаливания

Как узнать ампераж

Время на чтение:

Люди часто испытывают затруднения при переводе различных электротехнических величин. Формулы вычислений известны со школьного курса физики, но поскольку в жизни встречаются нечасто, навык оперирования ими обычно утрачивается.

Можно ли вычислить амперы зная мощность и напряжение

Большинство электротехнических величин взаимосвязаны между собой, поэтому, зная некоторые из них, можно абсолютно точно вычислить оставшиеся по простым формулам.

Учебник физики за 8-й класс

Основным законом электротехники является закон Ома, который связывает между собой величину сила тока в цепи с напряжением и сопротивлением простым выражением:

Где I — сила тока, ампер;

U — напряжение, вольт;

R — сопротивление, Ом.

Георг Симон Ом

Зная любые две величины, легко найти третью путем простейшего преобразования формулы. Другая формула связывает между собой силу тока, напряжение и потребляемую мощность:

Где Р — мощность, ватт.

Указанные формулы справедливы как для постоянного, так и для переменного тока.

Что такое амперы

Следует освежить в памяти определение силы тока, который выражается в амперах. Из курса физики известно, что сила тока определяется количеством заряда, перенесенного через объем за определенный промежуток времени. Это не наглядно и не всегда понятно.

Проще принять, что ток является величиной нагрева элементов электрической цепи. Чем больше сила тока, тем большее количество теплоты будет выделяться.

Большое число бытовых и промышленных приборов и устройств используют именно нагревающее свойство тока:

  • Нагревательные устройства (электроплиты, чайники, утюги).
  • Лампы накаливания (свечение перегретой нити накаливания).

Простейший электрокипятильник

Предохранители, используемые для защиты от короткого замыкания, также используют нагревательное свойство тока. В плавких предохранителях это перегорание тонкой калиброванной проволоки, в автоматических выключателях – изгибание биметаллической пластины.

Устройство предохранителя

Зачем нужно рассчитывать ток

На большинстве электроприборов указывается мощность потребления. Это необходимо для того, чтобы правильно вести учет потребления электроэнергии. Но для всего остального значение мощности несет мало информации. Параметры автоматов защиты и плавких вставок, сечение электропроводки, требуют знать протекающий ток или, как говорят электрики, ампераж нагрузки.

Простой пример: какой паяльник сильнее перегружает электропроводку, 42-х вольтовый на 80 Вт или 220-и вольтовый на 100 Вт? Логичный ответ, что более мощный, является неправильным. Ведь на самом деле, при включении второго паяльника в сети протекает ток около 0.5 А, а при включении первого — почти 2 А. Соответственно, для таких устройств требуется различная электропроводка и номинал защитных устройств. При одинаковой толщине проводов питания нагрев будет сильнее, при работе с низковольтным инструментом.

По этой же причине в линиях электропередач стремятся по максимуму повысить передаваемое напряжение. Поскольку мощность нагрузки остается одинаковой, при более высоком напряжении по проводам протекает меньший ток и поэтому:

  • Снижаются потери;
  • Уменьшается нагрев;
  • Снижается сечение проводов и, как следствие, их масса и нагрузка на опоры линий электропередач.

Высоковольтная опора ЛЭП

Как вычислить напряжение и мощность тока

Выше были показаны формулы, по каким можно высчитать какую-либо величину на основании значения известных.

Известна формула для определения мощности, исходя из тока и напряжения. Перед тем, как найти ампер формула должна быть преобразована следующим образом:

Если на устройстве указано, какая потребляемая мощность и сила тока в цепи, то можно определить, на работу с каким напряжением рассчитано устройство:

Также, пользуясь дополнительно законом Ома, можно определить значение сопротивления нагрузки. Чтобы не путаться в формулах, можно воспользоваться мнемонической записью, которая позволяет легко вычислить любое из значений, когда известны любые два других.

Мнемоническая запись электрических величин

Как правильно рассчитать амперы по мощности и напряжению

Для того, чтобы правильно произвести вычисления, все используемые величины должны быть одной размерности, то есть, если мощность выражается в ваттах, то напряжение должно быть выражено в вольтах, а ток — в амперах.

Если оперируют мощностью в киловатт, то, соответственно, напряжение должно быть в киловольтах, а ток в килоамперах.

Обратите внимание! Последний случай характерен только для мощной энергетики, а в быту обычно используют ватт, вольт и ампер.

Лучше обновить в памяти правила перевода кратных единиц:

  • Кило — тысяча;
  • Киловатт — тысяча ватт (1кВт = 1000 Вт);
  • Киловольт — тысяча вольт (1кВ = 1000 В);
  • Килоампер — тысяча ампер (1кА = 1000А);
  • Милли — одна тысячная;
  • милливатт — одна тысячная ватта (1мВт = 0.001Вт);
  • милливольт — одна тысячная вольта (1мВ = 0.001В);
  • миллиампер — одна тысячная ампера (1мА = 0.001А).

Сейчас большое количество бытовой техники потребляют мощность более киловатта, поэтому для правильных вычислений нужно данную величину перевести в ватт.

Например: На электрочайнике написано, что мощность потребления равна 1.8 кВт. Для того, чтобы рассчитать величину тока при подключении к бытовой сети 220 В, в формулу надо подставлять 1800 Вт. Тогда на выходе получается ток в амперах.

Как перевести ватты в амперы

Теперь о самом главном, как найти амперы зная мощность нагрузки и напряжение питания? Необходимо следующее:

  1. Привести величины к одному порядку (перевести киловатты в ватты);
  2. Подобрать нужную формулу вычислений (в данном случае I=P/U);
  3. Произвести вычисления.

Любые расчеты не представляют сложности, но для еще большего упрощения и исключения появления ошибок можно воспользоваться онлайн-калькулятором расчета. В такой программе достаточно ввести имеющиеся значения и получить недостающие величины.

Электрическая мощность, работа, энергия

Электрическая мощность

Подключим к цепи по очереди две лампочки накаливания, сначала одну, а затем другую и измерим силу тока в каждой из них. Она будет разной.

Сила тока в лампочке мощностью 25 ватт будет составлять 0.1 А. Лампочка мощностью 100 ватт потребляет ток в четыре раза больше — 0.4 А.

Лампочка в 100 ватт светится гораздо ярче, чем 25-ваттовая лампочка. Это значит, что ее мощность больше. Электрическая мощность измеряется в ваттах. Лампочка, мощность которой в 4 раза больше, потребляет в 4 раза больше тока. Это показывает, что мощность прямо пропорциональна силе тока.

Если мы подключим лампочку сразу к 2 источникам напряжения, то лампочка будет гореть ярче.

Это означает, что мощность пропорциональна напряжению.


Если мы соберем воедино эти факты, то получим формулу электрической мощности. Мощность W (Вт) равна напряжению V (В), умноженному на силу тока I (А). 1Вт = 1В * 1А. Из этого следует, что сила тока равна: I = W / V.

Читать еще:  Какая сила тока в лампочке накаливания

Электрическая работа

В механике мощность характеризует скорость выполнения работы. Чем быстрее идет работа, тем больше мощность.
(на второй картинке конвейер и девочка двигаются быстрее)
Работа равна произведению мощности и времени. Работа Р равна мощности W, умноженной на время t. Поэтому единица работы равна 1Вт * с.


Это равенство можно преобразовать, используя законы математики. Тогда мы получим, что мощность равна работе, деленной на время.

Эти взаимоотношения между мощностью и работой верны и для электричества. Лампочка мощностью 100 Вт за 1 секунду совершает электрическую работу 100 Вт * секунду, т.е. 100 Вт * с.

Единица электрической работы 1 Вт * с соответствует 1 джоулю из механики. Чтобы избежать огромных чисел, для обозначения электрической работы принято использовать 1 киловатт * час.

1 кВт * ч = 1000 Вт * ч = 60 000 Вт * мин = 3 600 000 Вт * с.

Электрическая энергия

Если какой-либо электрический прибор совершает работу, то он будет потреблять определенное количество энергии. Единица работы и энергии в данном случае будет одинакова. В электричестве для обозначения энергии используются единицы 1 Вт * с, 1 кВт * ч и 1 джоуль.

Согласно закону сохранения энергии, энергия не возникает из пустоты, а трансформируется из одной формы в другую. Теплоэлектростанция, работающая на угле, не создает электрическую энергию, а превращает химическую энергию угля сначала в двигательную энергию турбины, потом генератор превращает эту энергию в электрическую.

Таким образом, полученная электрическая энергия передается далее по проводам к потребителям. При этом проводники будут нагреваться, т.е. часть энергии превратится в тепло, которое будет нагревать лишь окружающий воздух, и потеряется. Это называется потерей энергии. К сожалению, все электрические процессы связаны с потерей части энергии.

При транспортировке электрической энергии хотелось бы избежать больших потерь. Чем больше сила тока, тем больше нагревается кабель. Меньшую силу тока можно использовать при условии, что увеличится напряжение. Поэтому, согласно закону W = U * I, используется большее напряжение. По этой причине электростанции передают энергию с напряжением 400 000 вольт и больше.

На определенных участках цепи напряжение составляет необходимые нам 220 вольт. Когда электрическая энергия достигает потребителя, то там она превращается в механическую энергию, тепловую энергию или свет. При этом тоже происходят потери.

Разные электрические приборы по-разному используют электрическую энергию.

Электронагреватель всю электрическую энергию превращает во внутреннюю энергию воды, т.е. тепловую энергию. Электрическая лампочка только 5% энергии использует для освещения, остальные 95% теряются в виде тепловой энергии.

Отношение затраченной и использованной энергии называется коэффициентом полезного действия. Коэффициент полезного действия лампочки накаливания очень низкий, а у электронагревателя очень высокий. Коэффициент полезного действия равен отношению использованной энергии к затраченной.p >

Как рассчитать силу тока лампы накаливания

В связи с возрастающими ценами на энергоносители становится актуальным вопрос с продлением ресурса годности приобретаемых ламп накаливания в повседневном пользовании, что в конечном итоге служит дополнительной экономией денег. Как всегда лампа перегорает в самый нужный момент и для решения этого вопроса автор предлагает один из способов решения этого вопроса с минимальными изменениями в схеме питания ламп накаливания.

Общеизвестно, что бросок тока при включении лампы накаливания сильно сокращает срок ее службы. Это связано с тем, что сопротивление холодной вольфрамовой нити гораздо меньше, чем нагретой до рабочей температуры. Например, обычная лампочка на 220В, 100 Вт имеет в холодном состоянии сопротивление около 38 Ом, а в нагретом — почти 500 Ом при этом первое значение легко измерить непосредственно омметром, а второе — вычислить, исходя из паспортных данных.

Таким образом, в номинальном режиме через нить накала стоваттной лампы течет ток 0,45А, а при включении — в первый момент — почти 6А т. е., более чем в 12 раз превышает номинальный. Такая перегрузка, конечно же, не полезна для долговечности “лампочки Ильича” — довольно дорогого в наше время осветительного прибора. Параметры лампочек наиболее часто применяемой в быту мощности приведены в таблице 1.

Мощность лампы — на 220В, Вт

Сопротивление холодной нити, Ом

«Холодный» ток, А

Сопротивление нагретой нити, Ом

Рабочий ток, А

Сопротивление R1,Oм

Также общеизвестен принцип последовательного включения двух ламп накаливания, с тем, чтобы продлить срок их службы. При этом очень сильно снижается общая освещенность помещения, т. к. при снижении напряжения питания лампы накаливания в два раза, сила света падает не в два раза, а гораздо сильнее.

Такое включение вполне допустимо в местах, где не требуется слишком сильного света, например, в подъездах многоквартирных домов, в прихожей или в туалете (практически лучше включать последовательно лампочки немного разной мощности, например, 75 и 100 Вт — освещенность будет несколько выше).

Там же, где от приборов освещения требуется полная световая отдача, можно применить схемы, ограничивающие максимальный рабочий ток лампы, или схемы, плавно повышающие напряжение на лампе при включении. Такие схемы неоднократно публиковались в популярной литературе — наиболее простая по схемному решению и миниатюрная приведена в [1], а из последних публикаций — в [2-6].

Недостатки данных схем — в их сложности, габаритности и материалоемкости — в них используются биполярные и полевые транзисторы, магнитоуправляемые микросхемы, тиристоры, симисторы, импульсные трансформаторы и много чего еще, а образцом дороговизны может служить схема [3], в которой используется микроконтроллер Z86E0208PSC в комплекте с оптопарой, симисторным оптроном, мощным иностранным симистором и т. п., так что, данная схема хороша только для иллюстрации действительно богатых возможностей микроконтроллеров Z8 и однокристальных контроллеров вообще.

Также не совсем корректно замечание в [3], касающееся нашего холодного климата, и о том (в [4]), что нить лампочки в холодильнике более подвержена броску тока, чем при комнатной температуре, поэтому перегорает чаще. Сравните порядок температур нити накаливания в рабочем состоянии (более 2000 о С) и в комнате (20 о С) — хоть в процентах, хоть в разах, хоть в децибелах, что по сравнению с этим «жуткий холод» в холодильнике (около 0°С) или даже в северных районах нашей страны (-40 о С).

Читать еще:  Выключатель с неонкой для светодиодных ламп

Неверно и утверждение, что “механический контакт — это всегда плохо”. При правильном использовании контактов (например, соответствующем подборе типа реле) некоторое неизбежное искрение вовсе не приводит к обгоранию контактов.

Наоборот, у механических контактов есть большое достоинство — падение напряжения на них равно нулю вольт (или чуть-чуть больше, но за пределами измерений даже очень точных вольтметров и омметров — попробуйте измерить), в то время, как на полупроводниковых приборах — от 0,3В (один диод, чего никогда не бывает) до 2-3 В (тиристор или симистор) и не менее 5 В при включении диодного моста и тиристора, что приводит к снижению светоотдачи лампочки, хотя и не очень заметной и потере мощности (жалко не мощности, а того, что полупроводники нагреваются, требуя охлаждения и нагревая все вокруг себя).

Кроме всего прочего, схемы с использованием тиристоров и симисторов, как правило, создают при работе довольно сильные электрические и радиопомехи, что тоже нельзя признать полезным, а схемы, синхронизированные с сетевым напряжением сложны и подходят больше для нагревательных приборов, чем для освещения.

А анализ наиболее простой из упомянутых схем [1] заставляет сомневаться в том, что эта схема вообще была когда-либо изготовлена и испытана. На подобные мысли наводит, например, номинал конденсатора С1 — 10 мкФ х 100В. Откуда здесь сто вольт ведь он включен параллельно переходу база-эмиттер транзистора VT1, на котором может быть напряжение не более 1,5В, ну, 2В от силы не 0,7 — потому, что транзистор составной, в нем фактически два этих перехода.

Также на данной схеме будет “падать” довольно значительная часть рабочего напряжения, используемая на питание самой схемы и отнимаемая у лампочки — не менее 10В при нереально высоком коэффициенте усиления транзистора около 500. Практически на схеме будет падать гораздо больше, а это уже заметное снижение яркости — еще бы при этом не повысился срок ее службы!

Сама идея исполнения подобного устройства в виде “двухполюсника” [1, 6] заставляет вспомнить о палке с двумя концами — нужно бы снизить напряжение питания схемы до нуля, чтобы не терять яркость освещения, а не получается, т. к. схему все-таки нужно чем-то питать, и яркость все-таки теряется (повторюсь, сила света лампы накаливания при снижении напряжения питания уменьшается не пропорционально, а гораздо сильнее).

Включение лампы накаливания в сеть переменного тока через диод [5] тоже не лишено недостатков: при работе “на один полупериод” сильно снижается яркость свечения хотя и несколько повышается долговечность, а если лампочка сначала включается последовательно с диодом, а после прогрева диод закорачивается вручную [5] или автоматически [6] — максимальной долговечности таким путем все равно нельзя добиться, поскольку для холодной нити накала даже бросок тока в течение одного полупериода сетевого напряжения достаточно опасен.

Исходя из изложенного предлагается схема, ограничивающая начальный бросок тока лампы накаливания включенным последовательно с ней сопротивлением, которое спустя некоторое время замыкается накоротко контактами электромагнитного реле смотрите — рис.1.

Собственно схема устройства выделена штрихпунктирной линией, а его выводы обозначены крестиками на этой линии. Устройство реализовано в виде “трехполюсника”, один вывод которого (крестик около точки А) выполнен в виде клеммного винтика (в него зажимается отсоединенный от патрона провод), а два других вывода (крестики Б и В) — в виде небольших отрезков провода, зажимаемых винтиками на патроне лампы).

В момент подачи питания сетевым выключателем напряжение на конденсаторе С2 и обмотке реле К1 равно нулю, контакты реле разомкнуты, и ток течет через лампу HL1 и включенное последовательно с ней сопротивление R1. Через некоторое время конденсатор зарядится до напряжения срабатывания реле, его контакты замкнутся и зашунтируют собой сопротивление при этом на лампу будет подано полное напряжение питания. Поскольку к этому моменту лампа будет уже прогрета до слабого свечения, броска тока не будет и нить накала не перегорит.

Время задержки включения выбирать в диапазоне 0,2. 0,3 секунды, меньше — схема не будет выполнять свои функции, больше — не имеет смысла, т. к. нить накала лампы успевает прогреться за указанное время, а большая задержка неприятна для зрения. В связи с тем, что сопротивление работает только несколько мгновений при включении лампы, его можно взять сравнительно небольшой мощности — 2 Вт (при длительном включении на нем будет рассеиваться от 60 до 120Вт для разных номиналов). Время восстановления защиты при выключении напряжения питания (“отпускание” контактов реле) очень мало — в пределах 0,5 секунды.

Гашение “лишнего” напряжения питания для реле К1 производится конденсатором С1 (при использовании другого реле следует рассчитать гасящее сопротивление, а потом найти эквивалентную ему емкость гасящего конденсатора), который должен иметь рабочее напряжение не менее 400В (лучше 600 В), после него стоит выпрямительный мостик (любого типа, можно собрать из отдельных диодов небольшой мощности) для питания реле постоянным током. Конденсатор С2 определяет задержку включения лампы. Предохранитель (на 50 мА) нужен на случай пробоя конденсатора.

Номиналы резистора R1 для ламп различной мощности приведены в таблице 1 (хотя не будет большой беды, если по ошибке будет “вкручена” не та лампочка — все равно схема защиты будет работать, пусть и не так эффективно). Можно использовать резисторы любого типа, малогабаритные, некоторый разброс номиналов не страшен.

Реле К1 — типа РЭС-15 паспорт РС4-591-001 с напряжением срабатывания около 18В и рабочим током 15 мА или любое аналогичное миниатюрное. Хотя контакты данного реле могут управлять током 0,13А при переменном напряжении 127 В, его все же можно использовать в данной схеме, т. к., во-первых, падение напряжения на резисторе будет как раз около 130В, а во-вторых, коммутировать несколько повышенный ток (до 0,45 А для лампы 100 Вт) его контакты будут только при включении питания (работая “назамыкание”). Основной же износ и подгорание их наблюдается именно тогда, когда они разрывают цепь под нагрузкой, что в данной схеме будет производиться контактами сетевого выключателя (на схеме не показан).

При эксплуатации данной и подобных схем следует иметь в виду, что если при включении сетевого выключателя в течение нескольких секунд лампочка не загорается с номинальной яркостью — значит, схема управления вышла из строя. Следует немедленно выключить сетевой выключатель во избежание выгорания токопроводящего слоя ограничительного резистора (места пайки резистора могут расплавиться, также при этом в помещении будет ощущаться запах дыма). Практически же резисторы, например серии МЛТ, даже при почти полном сгорании покрывающей их краски, как правило, сохраняют номинал, достаточно близкий к исходному, поэтому заменять их в данной схеме при небольшом подгорании не имеет смысла.

Читать еще:  Лампы от розетки с удлинителем

Для защиты лампочек большей мощности следует подобрать другой тип электромагнитного реле с более мощными контактами и пересчитать гасящее сопротивление. Один из возможных вариантов печатной платы приведен на рис.2 — вид со стороны деталей.

Плата имеет размеры 72×42 мм. Она изготавливается из одностороннего фольгированного текстолита толщиной 1,5. 2 мм. Печатные дорожки обозначены серым цветом, контактные площадки — черным, отверстия внутри контактных площадок — также серым.

Для экономии травящего раствора фольга на свободных от дорожек местах не удаляется (закрашивается при изготовлении). Диодный мостик типа КЦ403 установлен “на бок” (вертикально) для экономии места, его выводы соединяются с контактными площадками небольшими отрезками провода. Плата имеет довольно большие габариты из-за того, что на ней оставлено много места под гасящий конденсатор (при изготовлении платы под конкретные детали это место можно уменьшить). Также много места занимает гасящий резистор — при работе в момент включения питания он слегка нагревается, поэтому вокруг него оставлено свободное место).

При изготовлении конструкции из исправных деталей она не требует наладки, следует только проверить время задержки включения. Готовую испытанную плату при использовании в помещении можно разместить без корпуса вблизи лампочки. Прикрепив в незаметном месте абажура, при эксплуатации же на открытом воздухе ее следует поместить в герметичный корпус из изоляционного материала (в таком случае клемму, обозначенную точкой А, следует перенести на поверхность корпуса, соединив ее с платой отрезком провода).

1. Банников В. Защита электроосветительных приборов. — Радио, 1990, №12, с. 53.

2. Малышев С. Светорегулятор с плавным нарастанием яркости. — Радиолюбитель, 2000, №5, с. 34.

3.Ольховский А., и др. Пускозащитное устройство для галогенных ламп. — Радио, 2000, №7, с. 27.

4.Гончаров А. Лампочка холодильника зажигается плавно. — Радиолюбитель, 2000, №7, с. 15.

5. Кузьмин В. Двухрежимное управление люстрой. — Радиолюбитель, 2000, №8, с. 34.

6.Коломойцев К. Щадящий лампы электронный выключатель. — Радиохобби, 2000, №6, стр.41.

Измерение мощности и работы тока в электрической лампе 150

ИНСТРУКЦИОННО – ТЕХНОЛОГИЧЕСКАЯ КАРТА

«ФИЗИКА»

ТЕМА : ЛР № 10 «Измерение мощности и работы тока в электрической лампе»

Обучающийся должен уметь:

— собирать цепь из источника тока, лампы, амперметра и ключа, соединив всё последовательно;

— измерять вольтметром напряжение на лампе;

— вычислять мощность тока в лампе;

— определять работу тока в лампе по времени её горения и мощности;

Норма времени: — 2 часа.

Оснащение рабочего места(оборудование для лабораторной работы):

1. источник тока;

2. низковольтная лампа на подставке;

5. реостат на 6-10 Ом;

7. соединительные провода.

Литература: учебник «Физика» автор: С.В. Громов, стр. 364.

Цель работы:

Научиться определять мощность и работу тока в лампе, используя амперметр, вольтметр и часы.

Вопросы к допуску:

1. Что называют мощностью?

2. Как рассчитать мощность?

3. Как выражается мощность электрического тока через напряжение и силу тока?

4. Что принимают за единицу мощности?

5. Как выражается единица мощности через единицы напряжения и силы тока?

6. Какие единицы мощности используют в практике?

7. Какую величину обычно указывают в паспортах приёмников тока?

8. Как можно выразить работу тока через мощность и время?

9. Какие используют единицы работы тока кроме джоулей?

Техника безопасности:

1. Соблюдать тишину при выполнении работы;

2. Правильно пользоваться предложенным оборудованием.

Теоретические сведения:

При замыкании электрической цепи на её участке с сопротивлением R, током I, напряжением на концах U производится работа А: A=UIt=I2Rt= .

Величина, равная отношению работы тока ко времени, за которое она совершается, называется мощностью P: P=A/t. Следовательно, P=IU=I2R=U2/R.

Причина несовпадения результатов определения мощности лампы накаливания, полученных опытным путём с мощностью, указанной на цоколе баллона лампы накаливания заключается в том, что на лампе указана номинальная мощность – столько, сколько лампа может дать. Если мы потребовали у неё меньше – она меньше и даст.

Погрешность измерений также могут вносить используемые часы. Если используется секундомер или просто заведомо точные часы, погрешность, вносимая ими, будет привычной – половина цены деления. Часы, сбитые с точного хода, могут дать огромную ошибку.

Порядок выполнения работы:

1. Собрать цепь из источника тока, лампы, амперметра и ключа, соединив всё последовательно.

2. Измерить вольтметром напряжение на лампе.

3. Начертить в тетради схему собранной цепи и записать показания приборов.

4. Вычислить мощность тока в лампе.

5. Заметить время включения и выключения лампы. По времени её горения и мощности определить работу тока в лампе.

6. Проверить, совпадает ли полученное значение мощности с мощностью, обозначенной на лампе. Если значения не совпадают, объясните причину этого.

7. Произвести перевод полученной мощности в кВт·ч.

8. Рассчитать сопротивление нити накала лампы.

9. Результаты измерений и вычислений записать в таблицу.

Таблица измерений:

P=UI (Вт), A=UIt (Дж), R=U/I (Ом)

Контрольные вопросы:

1. Каков физический смысл напряжения на участке электрической цепи?

2. Какие способы определения мощности тока вам известны?

3. Из какого металла изготовляют проволоки для спиралей ламп?

4. Зачем баллоны современных ламп накаливания наполняют инертным газом?

5. На какие напряжения рассчитаны лампы накаливания, выпускаемые нашей промышленностью?

6. Лампы, 200 – ваттная и 60 – ваттная, рассчитаны на одно напряжение. Сопротивление какой лампы больше? Во сколько раз?

7. Какое количество электроприборов одинаковой мощности (100 Вт) может быть включено в электрическую цепь напряжением 220 В при номинальной силе тока в предохранителе (для этой цепи) 5 А?

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector