49 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как от двух источников тока подключить одну лампочку

Параллельное подключение лампочек

Перед человеком, слабо разбирающимся в электричестве, возникают проблемы подключения нескольких лампочек. Когда проводка уже сделана, вся работа заключается в замене перегоревших ламп. Но бывают ситуации, когда нужно добавить еще одну или более лампочек к существующей системе. Здесь уже понадобятся элементарные знания электротехники и умение составить схему подключения.

Параллельное подключение светильников к проводам питания

В моду вошли точечные светильники, в результате количество источников света в домах и квартирах значительно увеличилось, а освещению стали уделять особое внимание. На фото выше изображены светильники для подвесного потолка с параллельным соединением. Через клеммные колодки лампы подключаются к фазному (L) и нулевому (N) проводам.

На первый взгляд здесь нет ничего сложного, но для длительной и надежной работы все должно быть сделано по правилам, которые нужно знать.

Схема подключений

Для создания подключений лампочек, прежде всего, надо изобразить упрощенную электрическую схему соединений и подключения к питанию. Она составляется по определенным правилам:

  • проводники графически обозначаются прямыми неразрывными линиями;
  • соединения обозначаются точками (если их больше двух), если точки нет, значит, провода пересекаются;
  • электрическая арматура и проводка на плане изображаются по ГОСТ 21.614 и ГОСТ 21.608.

Параллельное и последовательное соединение

Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу (L) и ноль (N). Два провода к ней подходят из распределительной коробки или из розетки. Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода (рис. а ниже). Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема (рис. б) изображает соединения нагляднее.

Схема параллельного соединения лампочек

Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети. К лампам на рис. выше можно добавить еще несколько, но ток при этом увеличится, а напряжение останется прежним.

Сила тока (I) в питающих проводах равна сумме сил токов всех участков (I1, I2, I3), подключенных параллельно (рис. б выше):

Мощность цепи (Р) находится как сумма мощностей всех участков (Р1, Р2, Р3):

Сопротивление (R) для трех нагрузок определяется из выражения:

Типы ламп и схемы подключения

Подключение ламп накаливания, приведенное выше, не представляет особой сложности. Но схема галогенных и люминесцентных ламп имеет некоторые отличия.

Галогенные

Питание пониженным напряжением повышает безопасность эксплуатации источников света. При этом яркость остается прежней. Галогенные лампы могут применяться с понижающими трансформаторами на 6, 12 и 24 В (рис. ниже).

Схема подключения галогенной лампы

Напряжение 220 В подается на малогабаритный электронный трансформатор, который можно встроить даже в корпус выключателя. Низковольтные галогенные лампы часто применяются в подвесных потолках. Их подключают параллельно и соединяют с трансформатором. На фото ниже представлена блок-схема с двумя трансформаторами. Напряжение 220 В подается на них через распределительную коробку. Нулевой провод обозначен синим цветом, а фазный – коричневым, со вставленным в разрыв выключателем.

Схема подключения галогенных ламп

Группы ламп соединены между собой параллельно в распределительной коробке, после которой производится разветвление питающих проводов на первичные обмотки трансформаторов.

Лампы подключаются ко вторичной обмотке 12 В параллельно между собой. Для их соединения применяются клеммные колодки (на схеме не показаны).

Выходной провод низкого напряжения не должен быть длиннее 2 метров. Иначе возрастают потери напряжения, и лампы будут светиться хуже. Будет лучше, если сделать расчет напряжения для всех ламп.

Пример расчета

Пример расчета напряжения на лампочках в зависимости от потерь в проводах следующий. При питающем напряжении V=12 В к трансформатору подключены параллельно 2 лампочки с сопротивлениями R1 = R2 = 36 Ом. Сопротивления подводящих проводов к ним равны r1 = r2 = r3 = r4 = 1,5 Ом. Требуется найти напряжение на каждой лампочке. Схема изображена на рис. ниже.

Потери в проводах питания лампочек

Напряжение на первой и второй лампочках составят:

V1 = VR(2r + R)/(4r 2 +6rR + R 2 ) = 10,34 В,

V2 = VR 2 /(4r 2 +6rR + R 2 ) = 9,54 В.

Из расчета видно, что даже небольшие сопротивления подводящих проводов приводят к существенному падению на них напряжения.

Общая нагрузка в схеме поддерживается на уровне 70-75% от максимальной, чтобы не перегревались трансформаторы.

Люминесцентные

Недостатком люминесцентных ламп является эффект мерцания, что ухудшает восприятие света глазами. Современные электронные ПРА (пускорегулирующие аппараты) решают эту проблему, но цена их выше. Для уменьшения пульсации при использовании электромагнитного балласта применяется двухламповая схема подключения, где на одной из ламп фаза сдвигается во времени. В результате суммарный световой поток выравнивается.

На рис. ниже изображена схема светильника с расщепленной фазой. Две лампы подключены к сети переменного напряжения параллельно. Обе они содержат индуктивные балласты (L1) и (L2). Но к лампе (2) подключен дополнительный балластный конденсатор (Сб), благодаря которому создается сдвиг тока по фазе на 60 0 .

Схема двухлампового светильника

В результате снижается суммарная пульсация светового потока светильника. Кроме того, ток внешней цепи почти совпадает по фазе с напряжением питания за счет комбинации опережающей и отстающей схем, что позволяет увеличить коэффициент мощности.

Видео про подключения

Про особенности параллельного и последовательного подключения рассказывает видео ниже.

Таким образом, для того чтобы правильно подключить лампочки в доме или квартире, надо сделать следующее:

  • начертить принципиальную электрическую схему системы освещения;
  • выполнить расчет проводки;
  • подобрать электрооборудование, арматуру и светильники;
  • правильно выполнить монтаж лампочек.

Совместная работа нескольких источников питания на одну нагрузку

www.electrosad.ru

У многих начинающих заниматься электроникой часто возникают проблемы нехватки мощности (тока) источников питания или недостаточной величины напряжения. Для того чтобы обойти эту проблему часто соединяют несколько источников параллельно или последовательно. Что при этом происходит и как это сделать правильно рассмотрим ниже.

Общие принципы

Параллельное и последовательное соединение элементов давно известно и применяется в практической схемотехнике, для получения заданных номиналов элементов. На примере соединения резисторов это выглядит так:

Но резистор или конденсатор имеет только один основной параметр — номинал и вариант соединения просто изменяет их результирующую (суммарную) величину.

На практике часто используется параллельное (иногда электрохимических) и последовательное соединение источников питания.

Последовательное соединение используется для увеличения результирующего напряжения, а параллельное — для увеличения суммарного потребляемого тока.

Последовательное соединение электрохимических источников питания

При последовательном соединении параметры ( E и Ri) просто суммируются,

Самое главное, Вы должны знать:

Как я уже говорил, каждый источник питания (любого типа) имеет свои характеристики которые можно свести к статическим и полностью определяющим его характеристики — Ri, U( E ); Эти характеристики химических источников тока могут меняться от экземпляра к экземпляру или со временем случайным образом (они зависят от множества параметров на каждом этапе технологического процесса их производства);

Не бывает двух абсолютно одинаковых источников питания, как вообще любых электронных компонентов. (хотя для того чтобы как-то ограничить разброс применяется группировка компонентов, по ряду номиналов и ряду точности).

Поэтому при последовательном соединении продолжительность работы химических источников тока определяется худшим в цепочке. Когда он потеряет емкость, его внутреннее сопротивление возрастет и ограничит потребляемый нагрузкой ток.

Читать еще:  Номинальный ток лампы накаливания формула

При параллельном соединении все много сложнее.

Отсюда вытекают большинство возникающих проблем.

Параллельное соединении электрохимических источников питания

При параллельном соединении электрохимических элементов (источников) питания, если не принимать мер возникают проблемы.

Дело в том что эти элементы обладают сразу несколькими параметрами определяющими их характеристики.

Напряжение (ЭДС) — E , и внутреннее сопротивление — Ri .

Сразу стоит уточнить, что эти параметры сугубо индивидуальны и поэтому достаточно редко даже в одной партии они повторяются.

Посмотрим рисунок 3, при параллельном соединении двух разных источников питания (электрохимический элемент), имеющих равное внутренне сопротивление (Например 0,25 ом, суммарное 0,5 ) и разное выходное напряжение ( U 1 =2,2 В, U 2 =2,1 В, Δ U= 0,1 В ) между ними появляется ток перетекания I пер равный 0,2 А.

Этот ток будет существовать даже при выключенной нагрузке, пока напряжение на источниках не сравняется. Когда лучший электрохимический элемент разряжается на худший — это потеря их суммарной емкости.

Поэтому параллельное соединение отдельных элементов электрохимических источников тока не рекомендуется. Возможно параллельное соединение (резервирование) последовательных батарей элементов с применением специальных устройств защиты (см. рис. 6) от токов перетекания или коммутаторов.

Фотоэлектрические элементы — элементы солнечных батарей

Немного иная ситуация получается при параллельном соединении элементов солнечных батарей, которая определяется свойствами самого солнечного элемента. Это генерация тока под действиями квантов света попадающих на плоский p-n переход достаточно большой площади. Солнечный элемент имеет вольт-амперную характеристику подобную полупроводниковому диоду с соответствующими отклонениями присущими p-n переходам большой площади.

Поэтому для солнечного элемента токи перетекания отсутствуют. Но наличие в параллельно соединенных элементах Δ U, приводит к тому что при малом отборе тока элемент с меньшим напряжением просто отключается. А при высоком отборе мощности ток нагрузки каждого элемента разный и определяется током нагрузки на каждом элементе при данном напряжении нагрузки U. см. рис. 5.

Посмотрим на примере вольт амперной характеристики элемента солнечной батареи, что происходит при их параллельном соединении, как показано на Рис. 1б. Примерный график вольт амперной характеристики приводится ниже.

На рис. 5 видим, что при равном напряжении U н элемент SC3 генерирует ток I 1 меньший тока генерируемого элементом SC4 равного I 2 . В результате суммарный ток нагрузки равен:

То есть при данном U н отдаваемая соединенными параллельно элементами мощность равна:

Этот требует, чтобы не перегружать лучшие элементы, группировать при параллельном соединении элементы с близкими токами (характеристиками в рабочих точках).

А еще лучше формировать последовательно соединенные группы элементов на номинальное напряжение с последующим их соединением в параллельные группы заданной мощности.

Совместная работа батарей химических элементов

Часто рекомендуют при параллельном подключении батареи электрохимических источников использовать включенные последовательно с каждой батареей диоды, которые предотвратят токи перетекания. Но условия равенства их выходного напряжения (максимальной близости) сохраняется. Это особенно важно именно для электрохимических источников питания, которые имеют ограничения по разрядному току. В случае его превышения сокращается ресурс. Схема включения показана на рис. 6.

Здесь необходимо учитывать, что выходное напряжение такой батареи меньше на 0,3 -:- 0,8В (падение напряжения на p-n переходе диода при его прямом смещении) чем у батареи без защитных диодов. Как видно из величины потери напряжения использовать эту схему для параллельного соединения отдельных элементов не экономично. Велики потери мощности.

Диоды так же позволяют использовать горячую замену батареи, поскольку при подключении свеже заряженной батареи диод разряженной просто будет заперт.

Блоки питания

Свои особенности при параллельном соединении имеют и блоки питания работающие на общую нагрузку.

Все типы блоков (сетевые 50 Гц и импульсные — в том числе повышающие и понижающие преобразователи постоянного тока в постоянный) содержат в своем составе преобразователь напряжения (трансформатор или электронный импульсный преобразователь с трансформатором) и выпрямляющее устройство на выходе — диодные выпрямители. На рис. 7 показано такое соединение.

В данной схеме, как при параллельном соединении солнечных элементов, не существует статических токов перетекания, они пресекаются диодными выпрямителями которые, как известно, имеют очень большое обратное сопротивление.

Обязательное условие при таком включении блоков питания это: равенство напряжений и наличие соединения общих точек обоих источников питания показанных на рис. 7 пунктирной линией красного цвета. Это условие определяется, как понятно из сказанного выше, а равномерной нагрузкой каждого источника питания.

Но она, как любая система, имеет свои особенности.

Это импульсные токи перетекания при зарядке фильтрующего конденсатора с меньшим напряжением (например U2 ) от БП1, где напряжение больше. После выравнивания напряжения ток перетекания уменьшается до нуля.

В реальности напряжение на выходе БП1 и БП2 разное. И поэтому рассматриваем работу такой связки учитывая дополнительные параметры показанные на рис 8 .

Известно, что каждый блок питания имеет свое внутреннее сопротивление Ri, а за счет системы стабилизации его величина существенно снижается. Практически Ri определяет КПД блока питания и желательно чтобы соотношение Rн/ Ri было максимальным. Поскольку ток нагрузки блока питания определяется суммой Ri и Rн, а как мы уже знаем Ri -> min, то можно считать, что он целиком определяется R н.

В связке двух параллельно включенных блоков питания нагружается только тот БП который имеет более высокое выходное напряжение. То есть I н = I 1 . Это будет продолжаться до тех пор пока выходное напряжение (за счет падения напряжения на Ri ) не начнет падать (система стабилизации не сможет его поддерживать, когда ток нагрузки достигнет максимального, в этом случае начнет расти внутреннее сопротивление нагруженного блока питания Ri. ). Второй БП будет до этого будет работать в режиме холостого хода.

Такой режим работы нельзя считать нормальным.

Кроме выравнивания выходного напряжения — известно другое решение проблемы, это включение последовательно с выходом каждого БП небольшого выравнивающего резистора, который как бы увеличивает его внутреннее сопротивление, в результате чего выходное напряжение падает и включается в работу блок питания имеющий меньшее напряжение. Причем их величина одинакова для обоих.

Величина этого сопротивления от 1% до 10% от R н и зависит от разницы выходных напряжений и мощности нагрузки.

Недостаток данного решения потери мощности в выравнивающих резисторах.

Но, для равномерной загрузки, требование максимального сближения U1 и U2 остается.

Заключение

В Интернет форумах множество публикаций посвященных параллельному включению и только единичные сообщения о фатальных результатах. эти единичные случаи возможны из-за скрытых неисправностей блоков питания или большой разницы выходных напряжений.

Параллельное соединение выходных цепей блоков импульсных питания возможно. Но при этом для равномерной загрузки их выходные напряжения должны быть максимально близки. В случае невыполнение этого условия возможна перегрузка БП с большим напряжением.

Параллельное включение отдельных электрохимических элементов питания недопустимо,

Параллельное включение батарей электрохимических элементов питания возможно при условии применения защитных диодов в составе каждой батареи,

Параллельное соединение фотоэлектрических элементов допустимо, но при этом надо учитывать что возможна перегрузка лучших элементов в группе (с наибольшим напряжением), а при большой разнице в выходном напряжении худший элемент может вообще не включаться в работу.

Читать еще:  Комнатные выключатели для светодиодных ламп

Обсуждения параллельного включения блоков питания компьютеров :

Схема проходного выключателя с двух мест на одну лампочку

Схема подключения проводного выключателя с 2 мест. Знаете ли вы все преимущества и недостатки этой электросхемы? 3 важных нюанса подключения

Сколько контактов имеет ПВ?

  • Один;
  • Три.

Пояснение: ПВ содержит три контакта. Один из них — «общий», а два прочих соединяются со следующим ПВ.

В помещении не горит свет. Сперва была нажата кнопка первого ПВ, затем второго, а после этого — вновь первого. Будет ли гореть свет после этих действий?

  • Да;
  • Нет.

Пояснение: Да, т.к. после третьего действия фазовое напряжение достигнет лампочки.

Может ли быть реализована электросхема с ПВ для работы с двумя лампами?

  • Да;
  • Нет.

Пояснение: Да для этого используются двухкнопочные ПВ.

Электрическое освещение — незаменимый спутник любой современной квартиры. Управление светом осуществляется с помощью переключателей: на один источник освещения (обыкновенную лампочку, или несколько ламп) приходится один переключатель. Но далеко не всегда это устраивает владельцев помещения по некоторым причинам. Именно поэтому возникает вопрос, как сделать возможным включение лампочки сразу с двух и более мест? В данном материале мы дадим подробный ответ на этот вопрос, а также приведем схему подобного включения, и расскажем, как работает ПВ схема.

Для чего может понадобится схема ПВ света на 2 выключателя?

Ситуации, когда в комнате или ином помещении необходима реализация подобной схемы проходного выключателя, бывают самыми разнообразными. К примеру, большая спальная комната. Очень удобно разместить переключатель света у каждой кровати, чтобы управление освещением было у каждого жильца. К тому же, вам не придется добираться в темноте до вашего спального места. Войдя в комнату, вы включаете свет, а уже после того, как заняли свое место в кровати, вы выключаете его.

Также выгодно использовать подобную схему в небольших домах, величиной 3-5 этажей. Если делать выключатель света в парадной для каждого этажа по отдельности, это выльется в необходимости сборки лишних схем управления.

При использовании проходного выключателя с двух мест, жилец дома включит свет, заходя в подъезд, и выключит его, находясь на своем этаже.

Другой пример — большой кабинет на несколько рабочих мест. Наличие возможности выключить/включить свет сразу с двух и более точек делает такой офис гораздо уютнее.

Как выглядит проходной выключатель с 2 и более мест?

Схемы проходных выключателей

Отличить внешне переключатель, подключенный к подобной схеме, по наружной стороне невозможно. Это обыкновенный однокнопочный выключатель/включатель. Существует двух- и более кнопочное исполнение, применяющееся тогда, когда освещение более сложное, и каждая кнопка включает конкретную лампу. Вместо кнопочного переключателя используется и сенсорный, но принцип действия остается прежним.

Преимущества и недостатки схемы ПВ с 2 мест

У таковой схемы включения есть преимущества и недостатки. Они вытекают из самой сути работы подобного переключателя. К преимуществам относят:

  1. Повышение уровня комфорта. Из приведенных выше примеров исходит, что использование схемы позволяет избавиться от неудобств, возникающих в быту;
  2. Простота исполнения. Данная электросхема очень проста в исполнении, и не требует применения какого-либо дополнительного специфичного оборудования;

Недостатком подобной реализации управления освещением называют только перерасход электроэнергии. Вспомним вышеупомянутый пример про подъезд. Войдя в него, человек включает свет, а уже поднявшись на свой этаж выключает его. Освещение будет продолжать работать на всех этажах, пока житель дома не нажмет на переключатель. Подобный расход нельзя внушительным, а когда речь идет о небольших помещениях, он и вовсе отсутствует.

Схема проходного выключателя с двух мест

На рисунке представлена простейшая электросхема управления освещением с двух мест с помощью проходных выключателей. Под цифрами 1 и 2 обозначены сами переключатели. Красным цветом выделен фазный провод — то есть, провод, по которому идет напряжение. На схеме в качестве источника света упрощенно изображена одиночная лампа, но на ее месте допускается более сложное освещение.

На рисунке отображается то, как работает ПВ схема: при нажатии на любой из переключателей будет выключен/включена лампочка. Если первый переключатель передал напряжение на лампу, то нажатие на второй переключатель выключит свет — в этом месте фазный провод «прервется» Справедливо и обратное. На схеме изображена ситуация, когда оба переключателя выключены. Лампочка не будет активна при любых расположениях кнопок. Но что будет в других ситуациях? Рассмотрим каждый из возможных вариантов.

На этой схеме последовательно был нажат сперва первый переключатель, а затем второй. Зеленая стрелка показывает, как действует контакт, после нажатия второй кнопке. Он обрывает течение электрического тока, поэтому лампочка становится неактивной.

Вслед за этим был вновь включен первый переключатель. Лампочка вновь загорится — фазовое напряжение достигнет источника света. После нажатия на первую кнопку, лампочка погаснет.

Так и работает электросхема проходного выключателя с двух мест на одну лампу. Ее механизм достаточно прост и понятен, коротко его описывают так:

  1. Если оба переключателя включены — источник освещения активен;
  2. Если один из переключателей включен — источник освещения активен.
  3. Оба переключателя выключены — источник освещения неактивен.

Как подключить проходной выключатель

Применение схемы включения с 2 мест

Каждый из переключателей имеет две клеммы. Для воплощения вышеописанной схемы в жизнь необходимо найти в каждой из них ту контактную клемму, где контакт закреплен одной стороной. Такую клемму называют «общей». В одном из переключателей к таковой подключается фазное напряжение, а в другом — провод от источника освещения.

Остальные клеммы соединяются между собой. Последовательность соединения любая. Синим цветом на схеме обозначается нулевой провод. Он проводится напрямую к источнику света от распределительной коробки.

В распределительной коробке находится пять соединений проводов.

3 нюанса по технике безопасности

При воплощении электросхемы в жизнь следует помнить о 3 нюансах:

  1. Для того чтобы определить какой провод фазовый — используйте специальный пробник.
  2. Не стоит использовать провода из различных металлов при их соединении «вскрутку». Из-за разности потенциалов провоцируется возгорание;
  3. При работе используйте толстые резиновые перчатки.

Как избежать 2 основные ошибок при подключении

  1. ПВ не устанавливается на «ноль». Он всегда соединяется с фазовым проводом. Иначе при необходимости проведения ремонтных работ, даже при отключении электричества, ПВ не будет обесточен, что вызовет опасную ситуацию;
  2. ПВ не имеет положений «Выключено» и «Включено». Положение кнопки лишь показывает одно из двух возможных состояний.

Простая схема подключения с четырех мест

Принцип действия остается прежним. Но в схему включается также два дополнительных перекрестных выключателя, необходимые для того, чтобы обеспечить соединения всех контактов.

ПВ схема подключения на 4 точки

Работа перекрестных переключателей независима от других. Они могут передавать напряжение на источник света даже если кнопки проходных переключателей находятся в неактивной позиции. На схематичном изображении отображено, что если свет включен, то нажатие на любую из кнопок приведет к его отключению. Верно и обратное.

Данная схема расширяется до любого количества мест управления освещения. Но главный принцип сохраняется: в начале и конце пути (до лампочки) фазового провода находится два проходных выключателя. Между ними располагаются перекрестные. Их количество равняется количеству желаемых точке управления освещением.

Читать еще:  Светодиодные лампы от проходного выключателя с подсветкой

Пять самых часто задаваемых вопросов

Можно ли сделать управление несколькими источниками освещениям с двух мест с помощью ПВ?

Да, подобная реализация возможна. Схема двойного ПВ на две лампочки будет отличаться лишь тем, что у каждого переключателей будет не одна кнопка, а несколько (по количеству ламп). Каждая кнопка будет регулировать только работу соответствующей ей лампочки и не влиять на работу остальных.

Можно ли сделать управление лампочкой из трех и более мест с помощью ПВ?

Воплотить подобную схему в жизнь с помощью только лишь проходных выключателей невозможно. Для решения этой проблемы дополнительно реализуются параллельные переключатели, которые позволяют увеличить количество мест управления освещением до любого нужного числа.

Чем отличается проходной выключатель от обычного?

Принцип действия обычного выключателя достаточно прост — при нажатии на кнопку от либо прерывает электрическую цепь, либо наоборот передает электрический ток далее. ПВ работает сложнее. При нажатии на кнопку происходит переключение между различными контактами. Конечный результат (будет ли активирована лампочка или нет) зависит от положения других переключателей.

Чем отличается проходной выключатель от параллельного?

Параллельный переключатель в отличие от проходного содержит целых 5 контактов, которые и обеспечивают более сложную схему управления освещением, имеющую гораздо большее количество вариантов. В ПВ всего три контакта, один — общий, а два других служат для передачи напряжения или разрыва электрической цепи — это зависит от положения кнопки.

На что нужно обращать внимание при выборе ПВ?

При выборе ПВ следует уделить пристальное внимание на конкретный тип устройства. Они могут различаться своими характеристиками, а также формой. Выделяют ПВ открытого (для соединения с открытой проводкой) и закрытого тип (Для соединения с проводкой, идущей внутри стен). Контакты устройства рассчитаны на конкретный электрический ток, поэтому при выборе модели следует ориентироваться на предполагаемую нагрузку.

Как подключить 4 ПВ?

Четыре ПВ подключаются с помощью перекрестных выключателей, как было описано выше.

Заключение

В статье мы рассмотрели все часто возникающие вопросы на тему подключения проходных выключателей. Воспользовавшись этим материалом и пройдя тест для самопроверки вы без труда сможете воплотить приведенную выше электросхему в жизнь.

Источник тока

Исто́чник то́ка (в теории электрических цепей) — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока.

Источник тока используется в качестве простейшей модели некоторых реальных источников электрической энергии или как часть более сложных моделей реальных источников, содержащих другие электрические элементы. Следует заметить, что электрические характеристики реальных источников могут быть близки к свойствам источника тока или его противоположности — источника напряжения.

В электротехнике источником тока называют любой источник электрической энергии.

Содержание

  • 1 Свойства
    • 1.1 Идеальный источник тока
    • 1.2 Реальный источник
  • 2 Примеры
  • 3 Применение
  • 4 Обозначения
  • 5 Примечания
  • 6 См. также
  • 7 Литература

Свойства [ править | править код ]

Идеальный источник тока [ править | править код ]

Сила тока, текущего через идеальный источник тока, всегда одинакова по определению:

I = const >>

Напряжение на клеммах идеального источника тока (не путать с реальным источником!) зависит только от сопротивления R подключенной к нему нагрузки:

U = I ⋅ R

Мощность, отдаваемая источником тока в нагрузку:

P = I 2 ⋅ R cdot R>

Поскольку ток через идеальный источник тока всегда одинаков, то напряжение на его клеммах и мощность, передаваемая им в нагрузку, с ростом сопротивления нагрузки возрастают, достигая в пределе бесконечных значений.

Реальный источник [ править | править код ]

В линейном приближении любой реальный источник тока (не путать с описанным выше источником тока — моделью!) или иной двухполюсник может быть представлен в виде модели, содержащей, по меньшей мере, два элемента: идеальный источник и внутреннее сопротивление (проводимость). Одна из двух простейших моделей — модель Тевенина — содержит источник ЭДС, соединенный последовательно с сопротивлением, а другая, противоположная ей, модель Нортона — источник тока, соединенный параллельно с проводимостью (то есть идеальным резистором, свойства которого принято характеризовать значением проводимости). Соответственно, реальный источник в линейном приближении может быть описан при помощи двух параметров: ЭДС E >> источника напряжения (или силы тока I источника тока) и внутреннего сопротивления r (или внутренней проводимости y = 1 / r ).

Можно показать, что реальный источник тока с внутренним сопротивлением r эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление r и ЭДС E = I ⋅ r >=Icdot r> .

Напряжение на клеммах реального источника тока равно

U out = I R ⋅ r R + r = I R 1 + R / r . >=I>=I<1+R/r>>.>

Сила тока в цепи равна

I out = I r R + r = I 1 1 + R / r . >=I>=I<1+R/r>>.>

Мощность, отдаваемая реальным источником тока в сеть, равна

P out = I 2 R ( 1 + R / r ) 2 . >=I^<2>>>.>

Реальные генераторы тока имеют различные ограничения (например, по напряжению на его выходе), а также нелинейные зависимости от внешних условий. В частности, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Примеры [ править | править код ]

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени ( t ≪ L / R ) после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) приводит к резкому возрастанию напряжения между контактами и к пробою зазора.

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник переменного тока. Следовательно, размыкание вторичной цепи трансформатора тока недопустимо. Вместо этого при необходимости перекоммутации в цепи вторичной обмотки (без отключения линии) эту обмотку предварительно шунтируют.

Применение [ править | править код ]

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частности операционных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (ИТУН). Применяется в основном для полевых транзисторов и электронных ламп.
  • Источник тока, управляемый током (ИТУТ). Применяется, как правило, для биполярных транзисторов.

В схеме токового зеркала (рисунок 2) ток нагрузки в правой ветви задается равным эталонному току в левой ветви, так что по отношению к нагрузке R2 эта схема выступает как источник тока.

Обозначения [ править | править код ]

Существуют различные варианты обозначений источника тока. Наиболее часто встречаются обозначения (a) и (b). Вариант (c) устанавливается ГОСТ [1] и IEC [2] . Стрелка в кружке указывает положительное направление тока в цепи на выходе источника. Варианты (d) и (e) встречаются в зарубежной литературе. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками напряжения.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты